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Chapter 1

Introduction

1.1 Prelude and Overview

What is Classical Mechanics (CM)?

CM deals with the motion of material objects through space and time and
with the laws that govern that motion.

Analysis:

Let’s go through this definition step by step:

(i) Material objects: The central property of the objects of CM is (inertial)
mass. We will see soon that mass is to be interpreted as resistance to
acceleration.
An important concept is that of a mass point: ⇔ a pointlike particle
with mass as its only property. Certainly, the idea of a (classical) mass
point is an idealization, but it is a useful one for two reasons: it greatly
simplifies actual calculations and it often is a good approximation even
if the objects are not small. Think of the Solar System. What makes
the idea of viewing the planets and the Sun as mass points work is that
the distances between them are large compared to their sizes.

(ii) Motion through space and time: There are a few (operational) things
to be said about space and time (pertaining to this course).

Space: is three-dimensional and Euclidian.
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→ One can define Cartesian coordinate systems, and the mathematical
description of what happens in space is facilitated by vector algebra in
R3.

Time: is just a homogeneous parameter.

→Motion: an object passes (continuously) through different positions
as time goes by, i.e., motion can be characterized by a trajectory r(t)
and its derivatives:

• trajectory r(t)

• velocity v(t) = d
dt
r(t) = ṙ(t)

• acceleration a(t) = d
dt
v(t) = v̇(t) = r̈(t)







⇒ ‘kinematics’:
mathematical description
of motion without
consideration of causes (forces)

Extensions of the notions of space and time (beyond this course)

– special theory of relativity → 4-dimensional “Minkowski” space
(space-time)

– general theory of relativity → (locally) curved space

– quantum mechanics →∞-dimensional Hilbert space

(iii) The governing laws: So, what causes the motion of objects? The
answer—according to Newton—is: forces. Analyzing the motion of
objects subject to forces is called dynamics (in contrast to kinematics,
where forces are not considered). This analysis is built on Newton’s
Laws, which we will recap shortly.

But first, let’s ask: What are we going to do in PHYS 3010 given that
Newton’s Laws are studied in PHYS 1010 and 2010?
The answer is: We will develop and apply alternate formulations of CM, the
so-called Lagrangian and Hamiltonan formulations (which are equivalent to
Newton’s). Why?

• To gain insight into the foundations of CM and physics in general. For
instance, we will discuss Hamilton’s principle which is an example of a
variational principle. Variational principles are in use in other branches
of physics, e.g. in quantum mechanics.
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• To learn a powerful problem-solving technique (i.e., the application of
the Lagrangian Equations of Motion).

1.2 Recap of Newtonian Mechanics

1.2.1 Newton’s Laws (1687)

Lex prima: “Every body continues in its state of rest, or uniform motion in
a straight line, unless it is compelled to change that state by forces impressed
upon it.”

Lex secunda: “The change of motion is proportional to the motive force
impressed and is made in the direction of the line in which that force is
impressed.”

Lex tertia: “To every action there is always imposed an equal reaction;
or, the mutual actions of two bodies upon each other are always equal and
directed to contrary parts.”

In addition, Newton formulated a corollary which is sometimes called his
fourth law. Its content is the principle of superposition of forces, i.e., it
states that forces add like vectors and that it is the net force that causes
the change of motion of an object according to his second law. Moreover,
he gave a definition of the ‘motion’ referred to in that law. It is the (linear)
momentum

p = mv

with the mass m and the velocity v.

Analysis

• The first law is Galileo’s principle of inertia. It includes the insight that
the states of rest and uniform motion are equivalent. As a consequence,
the descriptions of physical processes from the perspective of two ref-
erence frames which move uniformly with respect to each other are
also equivalent. In other words, this postulate introduces, somewhat
implicitly, inertial reference frames and Galilean transformations.
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Definition of an inertial reference frame: a reference frame in which
a forcefree body moves uniformly or is at rest (i.e., a system in which
Newton’s first law holds).

r
1

r 2

R

S 1

S 2

r 1 ( t )  =  R ( t )  +  r 2 ( t )

=  r r e l  +  v r e l t  +  r 2 ( t )

v 1 ( t )  =  v r e l  +  v 2 ( t )

a 1 ( t )  =  a 2 ( t )

m

Figure 1.1: Mass point m seen from two reference frames which move uni-
formly (R(t) = rrel + vrelt) with respect to each other.

According to the first law we have:

if F = 0 −→ a1 = a2 = 0

if F 6= 0 −→ a1 = a2 6= 0

• The second law tells us (quantitatively) what happens if one or more
than one forces act on a body. It is the fundamental equation of motion
(EoM) of CM:

ṗ = Fnet ≡
∑

i

Fi

⇐⇒ d

dt
(mv) = Fnet
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if ṁ = 0: mv̇ = ma = mr̈ = Fnet

ṁ = 0 is certainly fulfilled for mass points, but ṁ 6= 0 is possible,
too: Think of a rocket whose fuel is burnt. In more general terms (and
beyond the scope of this course) Einstein showed us that ṁ 6= 0 is
actually not the exception but the rule, because the mass of a moving
object depends on its speed, and therefore (in general) on time.

Consequences:

(i) If 0 = Fnet = ṗ =⇒ p = const −→ recover first law!

(ii) Invariance of EoM wrt. Galilean transformations (see above):

S1 : F1 = ma1 = ma2 = F2 : S2

This is why inertial reference frames are so important: the forces
are the same in all of them, hence they are all equivalent for the
description of a physical process.

• The third law expresses a fundamental property of physical forces1:
action equals reaction. Let’s consider two interacting mass points:

F12 : force on particle 1 due to particle 2

F21 : force on particle 2 due to particle 1






F12 = −F21

2ndlaw−→ m1a1 = F12 = −F21 = −m2a2

=⇒ m1

m2
=
|a2|
|a1|
≡ a2
a1

If one fixes the absolute scale by introducing a standard mass (the
kilogram) the last equation expresses a dynamical definition of mass in

1which, according to our current understanding of the fundamental interactions, has

to be formulated somewhat differently in modern physics.
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terms of accelerations: the smaller mass speeds up faster. Hence, we
can interpret mass as the resistance of an object to acceleration.

y

z

m 2

m 1 F 1 2

r 1
F 2 1

r 2

y

z

m 2

m 1

F 1 2

r 1

F 2 1

r 2

b )a )

Figure 1.2: Illustrations of the third law: the force vectors can be, but are
not necessarily directed along the line that joins the particles.

Note that Newton’s third law is fulfilled for the gravitational and the
electric forces, but not (at least not directly) for magnetic forces.

Further comments

(i) The physical origin of forces is (normally) not discussed in CM.

(ii) Instead, the basic problem of CM is to solve Newton’s EoM for given
forces. The EoM (normally) is a second-order ordinary differential
equation (ODE) of the form

r̈(t) = f(r, ṙ, t) (+ initial conditions)

Unfortunately, analytical solutions are only known for a few cases, but
numerical procedures are readily available (see, e.g., the various com-
puter problems in [FC]).

(iii) Conservation laws—briefly reviewed in the next section—emerge as
consequences of Newton’s Laws.
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1.2.2 (Linear) momentum, angular momentum, work,
and energy

a) Momentum

simplest situation: one forcefree mass point (MP):
F = 0 =⇒ p = mv0 = const momentum conservation

→֒ r(t) = r0 + v0t uniform motion

∢ system of N MPs and some useful notions:

• ‘internal force’ fki: (force exerted on MP k by MP i)

• ‘external force’ Fk: external force on kth MP

• ‘isolated system’: a system without external forces
(Fk = 0 for k = 1, ..., N)

• total mass: M =
∑N

k=1mk

• centre of mass R = 1
M

∑N
k=1mkrk

• centre-of-mass velocity: V = Ṙ = 1
M

∑N
k=1mkvk

• total = centre-of-mass momentum: P =MV =
∑N

k=1mkvk =
∑N

k=1 pk

• position of a MP wrt. centre of mass: r′k = rk −R

y

z

m 2

m 1

r 1

r 2

B s p . :   N  =  2

R

r ' 1

r ' 2

Figure 1.3: Definition of the centre of mass.
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∢ EoM of kth MP:

ṗk = Fk +
N∑

i=1

fki

note that fki = −fik −→ fkk = 0

−→
N∑

k=1

ṗk =

N∑

k=1

Fk +

N∑

i,k=1

fki

q q q (3rd law)

Ṗ = Fext + 0

The centre of mass of a particle system moves as if it were a single particle
of mass M acted on by the total external force.

Momentum conservation (holds in isolated systems):

if Fext = 0 =⇒ Ṗ = 0 =⇒ P = const

This makes the centre of mass a convenient choice for the origin of an
inertial reference frame (for an isolated system).

b) Angular momentum

definition for one particle:

l = r× p = m(r× v)

|l| = l = rp sin γ
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y

z

l

r

p

g

y

z

l

r
p

g

Figure 1.4: On the left panel the angular momentum vector points out of the
yz-plane, on the right panel it points into it.

∢ l̇ = d
dt
(r× p) = m(v × v) + r× ṗ = r× F

definition: torque N = r× F

−→ l̇ = N

if N = 0 =⇒ l̇ = 0 =⇒ l = const

The former equation is the fundamental EoM for rotational motion. The
latter expresses angular momentum conservation.

N = 0 if (i) F = 0

(ii) F ‖ r central force

Let’s consider a system of N MPs. The total angular momentum is defined
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as

L(t) =
N∑

k=1

lk(t)

=
∑

k

(
rk(t)× pk(t)

)

−→ L̇ =
∑

k

(rk × ṗk)

=
N∑

k=1

(rk × Fk) +
N∑

i,k=1

(rk × fki)

∢ :
∑

i,k

(rk × fki) =
∑

i,k

(ri × fik) =
1

2

∑

i,k

{
(rk × fki) + (ri × fik)

}

=
1

2

∑

i,k

{
(rk × fki)− (ri × fki)

}

=
1

2

∑

i,k

{
(rk − ri)× fki

}

= 0 if fki ‖ (rk − ri)

total torque is defined as

N =
∑

k

(rk × Fk) =
∑

k

Nk

Accordingly, we have derived

L̇ = N

if N = 0 =⇒ L̇ = 0 =⇒ L = const

In particular, total angular momentum is conserved in isolated systems.

c) Work and energy



13

Let’s start again with one MP. The most general definition of work is as
follows: if r(t) is the path on which the MP travels in the time interval [t0, t]
the associated work W is

W =

∫ t

t0

F
(
r(t′), v(t′), t′

)
· v(t′) dt′.

If the force is a vector field, i.e., if F = F(r) W is given by a line integral

W =

∫

K

F(r) dr with

dr = v(t′) dt′

r ( t )

K

r ( t 0 )
Discussion:

(i) For uniform F and rectilinear motion: W = F · r

(ii) W = 0 if F ⊥ dr

Example 1: If you simply hold (but do not move) a mass m in Earth’s
gravity field −→ W = 0 (since v = 0)

Example 2: uniform circular motion

r = (R cosωt, R sinωt)

v = (−Rω sinωt, Rω cosωt)

a = (−Rω2 cosωt, −Rω2 sinωt)

= −ω2r

−→ ma = F(r)

= −mω2r

−→ F · v = 0 ⇐⇒ F ⊥ dr = v dt =⇒ W = 0
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Let’s connect work with Newton’s EoM:

∢ W =

∫ t

t0

F
(
r(t′),v(t′), t′

)
· v(t′) dt′

EoM
= m

∫ t

t0

v̇(t′) · v(t′) dt′

=
m

2

∫ t

t0

d

dt′
(
v2(t′)

)
dt′

=
m

2

(
v2(t)− v2(t0)

)

=
1

2m

(
p2(t)− p2(t0)

)

definition: kinetic energy

T =
m

2
v2 =

p2

2m
≥ 0

−→ T (t) = T (t0) +W (t0 → t) ‘work-energy theorem’

The work-energy theorem holds for all forces. A stronger relation is obtained
if the force field is conservative. For a conservative force a scalar potential
energy function U exists such that

F(r) = −∇U(r)

Note that U is defined only up to a constant by this equation. Normally one
fixes this constant by requiring U(r)

r→∞−→ 0. The conservativity of a force
can be formulated in different (but equivalent) ways:

F = −∇U ⇐⇒ ∇× F = 0

m տց m
∫ 2

1

F(r) · dr ⇐⇒
∮

C

F · dr = 0

independent of path
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work− energy theorem −→ W = U(1)− U(2) = T (2)− T (1)
⇐⇒ T (1) + U(1) = T (2) + U(2)

E = T + U = const conservation of energy

In a more general situation the total force might consist of conservative and
dissipative parts

F = Fconservative + Fdissipative

∇ × F = ∇× Fdiss 6= 0

∢ Newton’s EoM:

mv̇ = −∇U(r) + Fdiss | · v
Fdiss · v = mv̇v +∇Uv

⇐⇒ Fdiss · v =
d

dt

(m

2
v2 + U(r(t))

)

⇐⇒
d

dt

(

T + U
)

=
dE

dt
= Fdiss · v

energy is not conserved in this case, but changes according to the power
associated with the dissipative force.

Let’s consider a conservative N -particle system. Starting from Newton’s
EoM ṗk = Fk +

∑N
i=1 fki one obtains (see Appendix A.1)

d

dt

(

T + U
)

= 0

T + U = E = const

energy conservation

where

• T =
∑

k Tk =
∑

k
mk

2
v2
k: total kinetic energy
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• U =
∑

k Uk +
∑

k<i Ūki =
∑

k Uk +
1
2

∑

k 6=i Ūki: total potental energy

(note that Ūki = Ūik)

if the following applies:

(i) Fk = Fk(rk) = −∇kUk(rk) (conservative external forces)

(ii) ∇k × fki = ∇i × fik = 0 (conservative internal forces)

(iii) fki = fki(rk − ri) = −fik(rk − ri) (internal forces fulfill Newton’s third
law and depend only on the relative coordinate rk − ri).



Chapter 2

Hamilton’s Principle —
Lagrangian and Hamiltonian
dynamics

2.1 Preliminary formulation of Hamilton’s prin-

ciple (1834/35)

Of all the possible paths along which a particle may move from one point to
another in a given time interval [t1, t2] the actual path followed is that which
minimizes the integral

S =

∫ t2

t1

(T − U) dt

Comments:

(i) L := T − U : Lagrangian (function)
obviously, the Lagrangian has the dimension of an energy, but it is not
the energy of the system. Note that the definition implies that the
system under study is conservative.

(ii) S =
∫ t2
t1
Ldt: ‘action integral’

(iii) Hamilton’s principle (HP) is an integral principle (in contrast to New-
ton’s law of motion)

17
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(iv) HP is a fundamental principle of modern physics.

r 2  =  r ( t 2 )

r 1  =  r ( t 1 )

s 2  >  s m i n

s m i n

s 1  >  s m i n

Figure 2.1: Illustration of Hamilton’s principle

(v) EoMs can be derived from HP
in order to do this we need a few basics of the calculus of variations.

2.1.1 Calculus of variations

given: reasonably well-behaved function f(x, ẋ, t)

sought-after: ‘path’ x(t) with x(t1) = x1 and x(t2) = x2 such that

I =

∫ t2

t1

f(x, ẋ, t) dt assumes extremum value

Theorem: a necessary condition for I to assume an extremum value for x(t)
is Euler’s equation:
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∂f

∂x
− d

dt

∂f

∂ẋ
= 0

Proof: assume that x(t) is the sought-after path
define neighbouring paths by

x(α, t) = x(t) + αη(t) with η(t1) = η(t2) = 0

→֒ ẋ(α, t) = ẋ(t) + αη̇(t)

the arbitrary function η(t) describes the deformation of the path and the
(real) parameter α is a scale factor that determines its magnitude

∢

∫ t2

t1

f(x(α, t), ẋ(α, t), t) dt = I(α)

the integral can be viewed as an ordinary function of α. If this function
assumes an extremum value at α = 0 (i.e., for x = x(0, t)) it follows that

dI

dα

∣
∣
α=0

= 0
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let’s work out the derivative:

dI

dα
=

d

dα

∫ t2

t1

f(x(α, t), ẋ(α, t), t) dt

=

∫ t2

t1

∂

∂α
f(x(α, t), ẋ(α, t), t) dt

=

∫ t2

t1

(∂f

∂x

∂x

∂α
+
∂f

∂ẋ

∂ẋ

∂α

)

dt

=

∫ t2

t1

(∂f

∂x
η(t) +

∂f

∂ẋ
η̇(t)

)

dt

integration by parts : =

∫ t2

t1

∂f

∂x
η(t) dt +

∂f

∂ẋ
η(t)

∣
∣
∣

t2

t1
−
∫ t2

t1

d

dt

(∂f

∂ẋ

)

η(t) dt

=

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

)

η(t) dt

(since η(t1) = η(t2) = 0)

→֒ dI

dα

∣
∣
∣
α=0

= 0 =

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

)

η(t) dt for x = x(0, t)

η(t) arbitrary
=⇒ ∂f

∂x
− d

dt

∂f

∂ẋ
= 0

Elementary example:

t

x ( t )

x v ( t )

x ( t )

t 1 t 2

x 1

x 2

shortest distance between two points in a plane

length of path: I =
∫ t2
t1

√
1 + ẋ2 dt

→֒ f =
√
1 + ẋ2 = f(ẋ)

∂f

∂x
= 0 ;

∂f

∂ẋ
=

ẋ√
1 + ẋ2

Euler−→ d

dt

( ẋ√
1 + ẋ2

)

= 0

=⇒ ẋ√
1 + ẋ2

= const = C1
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→֒ ẋ = ±
√

C2
1

1− C2
1

= C2 =⇒ x(t) = C2t + C3 (rectilinear path)

Remarks:

(i) A more interesting (and quite famous) application is the so-called
brachistochrone problem. It is example 6.2 in both [Tay] and [TM].

(ii) If the first derivative of a function vanishs the function is said to be
stationary at that point. Stationarity is necessary, but not sufficient for
a a minimum (not even for an extremum). Since the Euler equation is
equivalent to the stationarity of I at α = 0 we don’t know if its solution
really minimizes the integral. In fact, there are counterexamples (see,
e.g., Chap 6.3 of [Tay]) and, accordingly, a more cautious statement of
HP (which will be discussed later) refers only to the stationarity of the
action integral. For practical applications, this is of no concern.

(iii) δ-notation
It is quite common to use a short-hand notation in variational calculus—
the so-called δ-notation. To introduce it let’s go back to the calculation
of dI

dα
on the previous page. We had

dI

dα
=

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

)

η(t) dt

this can be rewritten by noting that η(t) = ∂x
∂α

and multiplying both
sides by a ‘small’ scale factor dα

dI

dα
dα =

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

) ∂x

∂α
dα dt

⇐⇒ δI =

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

)

δx dt

with the ‘variations’ δI = dI
dα
dα and δx = ∂x

∂α
dα.
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The stationarity of I is then expressed as

δI = 0

⇐⇒ δ

∫ t2

t1

f(x, ẋ, t) dt =

∫ t2

t1

δf dt

=

∫ t2

t1

(∂f

∂x
− d

dt

∂f

∂ẋ

)

δx dt = 0

More about the δ-notation: [TM], Chap. 6.7

(iv) A more rigorous definition of variations δI and δx is based on the
mathematical notion of a functional. A functional I[x] is a generalized
function: it maps a function to a number: x(t) 7→ I. Our integral is a
typical example

I[x] =

∫ t2

t1

f(x.ẋ, t) dt

One can construct a calculus for functionals, i.e., set up precise defi-
nitions and rules of how to differentiate them. Functional derivatives
then turn out to be closely related to our variations, i.e., the calculus for
functionals provides a foundation of the symbolic notation introduced
above.

(v) More on calculus of variations: [TM], Chap. 6; [Tay], Chap. 6

2.1.2 HP for a simple case

∢ 1 single mass point in one-dimensional world

L = T − U =
m

2
ẋ2 − U(x) = L(x, ẋ) ; F (x) = −dU

dx

HP : δS = δ

∫ t2

t1

L(x, ẋ) dt = 0

⇐⇒ d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 Lagrangian equation
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let’s work out the derivatives:

∂L

∂ẋ
= mẋ ;

d

dt

∂L

∂ẋ
= mẍ ;

∂L

∂x
= −dU

dx
= F (x)

→֒ mẍ = F (x) ⇐⇒ Lagrange ⇐⇒ HP

Appendix A.2 deals with the question of whether S always assumes a mini-
mum on the actual path (in the 1D world).

2.2 Constrained systems and generalized co-

ordinates

2.2.1 Preliminary for one mass point

a) Examples for constraints

(i) Motion on an inclined plane (without friction)

x

z

a

h

constraint: z = (− tanα)x+ h

−→ number of degrees of freedom (dofs) is
reduced to 2
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(ii) Motion on the surface of a sphere (no friction)

x

z

R
constraint: x2 + y2 + z2 = R2

−→ two dofs

(iii) Motion on the rim of a circle of radius r2 = R2 − z20

x

z

y

z 0

constraints: x2 + y2 + z2 = R2

z = z0 < R
−→ one dof

special case: z0 = R:
zero dof (particle cannot move)

if z0 >R the two constraints are not compatible

(iv) Planar pendulum

x

y

j
l

m

constraints: z = 0
l =

√

x2 + y2 = const

same as example (iii)

all constraints in examples (i) - (iv) are characterized by equations
of the form f(x, y, z) = 0. They are called scleronomic-holonomic

constraints.
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But there are other types of constraints:

(v) Bead on a uniformly rotating wire

x

y

j  =  w t

constraints: y = tan(ωt)x
z = 0

−→ one dof

the first constraint is characterized by an equation of the form
f(x, y, z, t) = 0, i.e., the constraint involves the time. It is called
rheonomic-holonomic.

(vi) Mass point within a spherical container

x

z

constraint: x2 + y2 + z2 < R

variant:

x

y

x2 + y2 + z2 ≥ R2

−→ these are nonholonomic constraints (characterized by inequal-
ities)
−→ number of dofs is not reduced.
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(vii) Disk rolling on a horizontal plane (without slipping)

x

y

j

bird eye’s view (for a
special situation)

centre of mass velocity is locked to angular velocity
ω = ψ̇. Hence:

vCM = ±vCM cosϕî± sinϕĵ

vCM = Rψ̇

→ differential (nonholonomic) constraints:

dxCM = ±Rdψ cosϕ , dyCM = ±Rdψ sinϕ

→ number of dofs is not reduced

Summary

holonomic constraints

{
scleronomic : f(x, y, z) = 0
rheonomic : f(x, y, z, t) = 0

nonholonomic constraints

{
inequalities
differential

holonomic constraints reduce the number of dofs, but nonholonomic
ones do not.

b) Generalized coordinates and Lagrangian equations

∢ one-particle system with holonomic constraint f(x, y, z) = 0. Let’s
assume that the equation of constraint can be solved for z = z(x, y).
Then, the z-coordinate can be eliminated from the Lagrangian:

−→ L(x, y, z, ẋ, ẏ, ż, t) = L(x, y, z(x, y), ẋ, ẏ, ż(x, y, ẋ, ẏ), t)

= L̃(x, y, ẋ, ẏ, t)

see example (i): inclined plane
constraint: f(x, y, z) = h− x tanα− z = 0 ⇐⇒ z(x) = h− x tanα
in addition let’s assume y = 0 and that gravity acts on the particle:
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T =
m

2
v2 =

m

2
(ẋ2 + ẏ2 + ż2) =

m

2
(ẋ2 + ẋ2 tan2 α)

U = mgz = mg(h− x tanα)
→֒ L = T − U =

m

2
ẋ2(1 + tan2 α)−mg(h− x tanα)

= L(x, ẋ)

HP ⇐⇒ d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

work out the derivatives:

∂L

∂ẋ
= mẋ(1 + tan2 α),

d

dt

∂L

∂ẋ
=

mẍ

cos2α
,
∂L

∂x
= mg tanα

Lag.eq.
=⇒ mẍ−mg tanα cos2 α = 0

⇐⇒ ẍ = g sinα cosα

solution : x(t) =
g

2
(sinα cosα)t2 + C1t+ C2

z(t) = h− g

2
(sin2 α)t2 − (C1t + C2) tanα

One obtains—of course— the same result in the Newtonian framework.
The treatment is, however, rather different. One has to recognize that
the plane exerts a normal force on the particle such that the resulting
(net) force points in the direction of the inclination. The acceleration is
then determined by the net force, i.e., the projection of the gravitational
force in this direction:

ma = Fnet = mg sinα

integration yields

s(t) =
g

2
t2 sinα + C3t + C4
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this result can be written in terms of the x- and z-coordinates by using
sinα = (h − z)/s and x = s cosα. Apparently, the advantage of the
Lagrangian treatment is that it is not necessary to think about the
normal force (i.e., the force of constraint).

see example (iv): planar pendulum
let’s assume that gravity is acting: U = mgy

constraints : z = 0

x = ±
√

l2 − y2

L = T − U =
m

2
(ẋ2 + ẏ2)−mgy

=
m

2

(y2ẏ2 + ẏ2(l2 − y2)
l2 − y2

)

−mgy

=
m

2

( ẏ2l2

l2 − y2
)

−mgy = L(y, ẏ)

−→ this looks complicated!

It is a much better idea to work in polar coordinates:

r =
√

x2 + y2 = l = const

tanϕ = −x
y

⇐⇒ x = r sinϕ y = −r cosϕ
= l sinϕ = −l cosϕ

U = mgy = −mgl cosϕ
ẋ = lϕ̇ cosϕ , ẏ = lϕ̇ sinϕ

→֒ L =
m

2
l2ϕ̇2 +mgl cosϕ = L(ϕ, ϕ̇)

Lagrangian equation of motion:

∂L

∂ϕ̇
= ml2ϕ̇ ,

d

dt

∂L

∂ϕ̇
= ml2ϕ̈ ,

∂L

∂ϕ
= −mgl sinϕ

=⇒ ml2ϕ̈+mgl sinϕ = 0
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ϕ̈+ ω2 sinϕ = 0 , ω =

√
g

l

compare this to the Newtonian treatment (where another force of con-
straint, the tension of the rod, must be introduced).

For small angles one can assume sinϕ ≈ ϕ

=⇒ ϕ̈+ ω2ϕ = 0 =⇒ ϕ(t) = a sin(ωt− β)

for larger angles the oscillation is nonlinear and the solution much more
involved (see [TM], Chap. 4.4).

another example: (a variant of) the cycloidal pendulum
a cycloid is the path of a point on the edge of a circular wheel that
roles on a straight line. If the wheel roles in x-direction the equations
of the cycloid are

x = R(α− sinα)

y = R(1− cosα)

where α is the angle through which the rolling circle rotates.

Let’s consider a bead that slides on a wire that has the form of an
inverted cycloid

x = R(α− sinα)

y = R(1 + cosα)

The suitable (generalized) coordinate to express the Lagrangian is the
angle α. The potential energy is

U = mgy = mgR(1 + cosα)

we need

ẋ = Rα̇(1− cosα)

ẏ = −Rα̇ sinα
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to rewrite the kinetic energy

T =
m

2
(ẋ2 + ẏ2) = mR2α̇2(1− cosα)

→֒ L = T − U = mR2α̇2(1− cosα)−mgR(1 + cosα) = L(α, α̇)

derivatives:

∂L

∂α̇
= 2mR2α̇(1− cosα)

d

dt

∂L

∂α̇
= 2mR2(α̈(1− cosα) + α̇2 sinα)

∂L

∂α
= mR2α̇2 sinα +mgR sinα

Lagrangian equation of motion

=⇒ 2α̈(1− cosα) + α̇2 sinα− g

R
sinα = 0

this seemingly complicated equation of motion can be simplified by an
ingenious coordinate transformation:

step (i): use 1− cosα = 2 sin2 α
2
, sinα = 2 sin α

2
cos α

2

→֒ 2α̈ sin
α

2
+ α̇2 cos

α

2
− g

R
cos

α

2
= 0

step (ii): substitute u = − cos α
2
:

→֒ u̇ =
α̇

2
sin

α

2

ü =
α̈

2
sin

α

2
+
α̇2

4
cos

α

2

=
1

4
(2α̈ sin

α

2
+ α̇2 cos

α

2
)

EoM−→ ü+
g

4R
u = 0

this is nothing but the equation of motion of an harmonic oscillator
of frequency ω =

√
g
4R
. The motion is said to be isochronous, i.e., it
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has a frequency that is independent of the amplitude. To complete the
solution one has to find α(t) by using the solution u(t) in the coordinate
transformation, and then insert α(t) in the cycloid equations to find
x(t) and y(t) (try it!).

Conclusions:

– Holonomic constraints can be used to eliminate coordinates.

– Suitable coordinates yield simple Lagrangian equations. Unfortu-
nately, there is no general recipe of how to find such coordinates.

2.2.2 N-particle systems

Let’s generalize things to be able to deal with systems with many particles
and many degrees of freedom. We start by introducing a convenient nomen-
clature:

r1 r2 .... rN

x1 y1 z1 x2 y2 z2 xN yN zN

↓ ↓ ↓ ↓ ↓ ↓ ւ ↓ ց
x1 x2 x3 x4 x5 x6 x3N−2 x3N−1 x3N

m1 m2 mN

ւ ↓ ց ւ ↓ ց ւ ↓ ց
m1 = m2 = m3 m4 = m5 = m6 m3N−2 = m3N−1 = m3N

yields, e.g. : T =
N∑

i=1

mi

2
v2
i =

1

2

3N∑

i=1

miẋ
2
i

a) Classification of constraints

(i) k1 scleronomic-holonomic constraints

fi(x1, ..., , x3N ) = 0 ; i = 1, ..., k1

(ii) k2 rheonomic-holonomic constraints

fj(x1, ..., , x3N , t) = 0 ; j = 1, ..., k2
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→ k1 + k2 = k holonomic constraints reduce the number of
degrees of freedom of an N -particle system from 3N to 3N − k (if
they are independent and compatible with each other).

(iii) m nonholonomic differential constraints
... can also be characterized by equations (see Appendix A.3), but
they do not reduce the number of dofs.

b) Generalized coordinates and configuration space

goal: description of N -particle system in terms of suitable (generalized)
coordinates

typical starting point: Cartesian coordinates

consider coordinate transformation (x1, ..., x3N )←→ (q1, ..., q3N)

xi = xi(q1, ..., q3N , t) i = 1, ..., 3N
generalized coordinates qµ = qµ(x1, ..., x3N , t) µ = 1, ..., 3N

assume k independent holonomic constraints
fj(x1, ..., x3N , t) = 0 [or fj(q1, ..., q3N , t) = 0], j = 1, ..., k

choose

q3N−k+1 = f1(x1, ..., x3N , t) = 0
q3N−k+2 = f2(x1, ..., x3N , t) = 0
...

q3N = fk(x1, ..., x3N , t) = 0







(ignorable coordinates)

=⇒ 3N−k independent generalized coordinates remain. They describe
the system completely.

q = (q1, ..., q3N−k) : “configuration (vector)′′

= point in (3N − k)−dim. configuration space

→֒ xi = xi(q1, ..., q3N−k, t)

→֒ ẋi =
d

dt
xi(q1, ..., q3N−k, t)

=
3N−k∑

µ=1

∂xi
∂qµ

q̇µ +
∂xi
∂t

= ẋi(q, q̇, t), i = 1, ..., 3N
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q̇µ: generalized velocity

→֒ L = L(q, q̇, t)

example: double pendulum (N = 2)

z y

x

ϑ
A

ϑ
B

l

l
A

B

m
A

B
m

Cartesian coordinates (x1, ..., x6)

constraints : x3 = x6 = 0

lA =
√

x21 + x22
lB =

√

(x4 − x1)2 + (x5 − x2)2






=⇒ 4 constraints

=⇒ 2 dofs
generalized coordinates:

q1 = ϑA

q2 = ϑB






characterize motion in 2− dim. configuration space

q3 = x3 = 0 , q6 = x6 = 0

q4 = lA −
√

x21 + x22 = 0

q5 = lB −
√

(x4 − x1)2 + (x5 − x2)2 = 0







ignorable

L = T − U =
1

2

6∑

i=1

miẋ
2
i − g(m2x2 +m5x5)

coordinate transformation:

x1 = lA sinϑA = lA sin q1

x2 = −lA cos ϑA = −lA cos q1

x3 = 0

x4 = lA sin q1 + lB sin q2

x5 = −lA cos q1 − lB cos q2

x6 = 0

general form xi = xi(q1, q2) , i = 1, ..., 6
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ẋ1 = lAq̇1 cos q1

ẋ2 = lAq̇1 sin q1

ẋ3 = 0

ẋ4 = lAq̇1 cos q1 + lB q̇2 cos q2

ẋ5 = lAq̇1 sin q1 + lB q̇2 sin q2

ẋ6 = 0

general form ẋi = ẋi(q1, q2, q̇1, q̇2) , i = 1, ..., 6

use conventional nomenclature for the masses

(m1, m2, m3) −→ mA (m4, m5, m6) −→ mB

to obtain the Lagrangian

→֒ L =
mA

2
l2Aq̇

2
1

(

cos2 q1 + sin2 q1

)

+
mB

2

[(
lAq̇1 cos q1 + lB q̇2 cos q2

)2

+
(
lAq̇1 sin q1 + lB q̇2 sin q2

)2
]

+mAglA cos q1 +mBg
(
lA cos q1 + lB cos q2

)

=
mA

2
l2Aq̇

2
1 +

mB

2
l2Aq̇

2
1 +

mB

2
l2B q̇

2
2 +mBlAlB q̇1q̇2

(
cos q1 cos q2 + sin q1 sin q2

)

+ (mA +mB)glA cos q1 +mBglB cos q2

=
mA +mB

2
l2Aq̇

2
1 +

mB

2
l2B q̇

2
2 +mBlAlB q̇1q̇2 cos(q1 − q2)

+ (mA +mB)glA cos q1 +mBglB cos q2

= L(q1, q2, q̇1, q̇2)
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2.3 General formulation of Hamilton’s prin-

ciple and Langrange’s equations for N-

particle systems

2.3.1 Hamilton’s principle

Of all the possible paths along which a particle system with 3N -k degrees of
freedom may move from one point in configuration space to another one in a
given time interval [t1, t2] the actual path is such that the action integral

S =

∫ t2

t1

L(q, q̇, t) dt

is stationary, i.e., δS = 0.

Comments:

(i) “Path”: motion in 3N − k dimensional configuration space

q(t) = {q1(t), ..., q3N−k(t), t1 ≤ t ≤ t2}

(ii) In most cases the stationary point is a minimum.

(iii) Derivation of Lagrangian equations of motion from HP
it is straightforward to generalize the arguments of Sec. 2.1.1

– assume that q(t) is the actual path for which δS = 0

– neighbouring paths:

qµ(α, t) = qµ(t) + αηµ(t) (µ = 1, ..., 3N − k)
q̇µ(α, t) = q̇µ(t) + αη̇µ(t)

with ηµ(t1) = ηµ(t2) = 0

– ∢ S[q] =
∫ t2
t1
L(q(α, t), q̇(α, t), t) dt = S(α)

– q(t) is the sought-after path ⇔ dS
dα

∣
∣
∣
α=0

= 0



36

• dS

dα
=

∫ t2

t1

∂

∂α
L(q(α, t), q̇(α, t), t) dt

=
3N−k∑

µ=1

∫ t2

t1

( ∂L

∂qµ

∂qµ
∂α

+
∂L

∂q̇µ

∂q̇µ
∂α

)

dt

=
3N−k∑

µ=1

∫ t2

t1

( ∂L

∂qµ
ηµ(t) +

∂L

∂q̇µ
η̇µ(t)

)

dt

=

3N−k∑

µ=1

∂L

∂q̇µ
ηµ(t)

∣
∣
∣

t2

t1

︸ ︷︷ ︸

+

3N−k∑

µ=1

∫ t2

t1

( ∂L

∂qµ
− d

dt

∂L

∂q̇µ

)

ηµ(t) dt

= 0

dS
dα

∣
∣
∣
α=0
⇐⇒ d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0 , µ = 1, ..., 3N − k

(for qµ = qµ(α = 0, t))

2.3.2 Equivalence of Lagrange’s and Newton’s equa-

tions of motion

a) System without constraints in Cartesian coordinates
show:

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 , i = 1, ..., 3N

⇐⇒ ṗk = Fk +

N∑

j=1

fkj , k = 1, ..., N
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proof:

L = T − U =
1

2

3N∑

j=1

mj ẋ
2
j − U(x1, ..., x3N)

→֒ d

dt

∂L

∂ẋi
=

d

dt

∂T

∂ẋi
= miẍi = ṗi (i = 1, ..., 3N)

∂L

∂xi
= −∂U

∂xi
= Fi +

3N∑

j=1

fij

a detailed analysis of the last equation can be found in Appendix A.4.

b) Invariance of the Lagrangian equations to coordinate transformations

goal: show

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 ⇐⇒ d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0

with xi = xi(q1, ..., q3N , t) , i = 1, ..., 3N

=⇒ Lagrangian equations of motion in 3N generalized coordinates⇐⇒
Newtonian equations of motion in Cartesian coordinates

let’s be a bit more general and show invariance of the Lagrangian equa-
tions with respect to general coordinate transformations

qµ → Qα = Qα(q, t) , α = 1, ..., n

qµ = qµ(Q, t) , µ = 1, ..., n

ingredient : q̇µ =
d

dt
qµ(Q1, ..., Qn, t) =

n∑

β=1

∂qµ
∂Qβ

Q̇β +
∂qµ
∂t

= q̇µ(Q1...Qn, Q̇1...Q̇n, t)

→֒
∂q̇µ

∂Q̇α

=
∂

∂Q̇α

(∑

β

∂qµ
∂Qβ

Q̇β +
∂qµ
∂t

)

=
∂qµ
∂Qα
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assume
d

dt

∂L

∂q̇µ
− ∂L
∂qµ

= 0 , µ = 1, ..., n

L(q1...qn, q̇1...q̇n, t) = L
(

q1(Q1...Qn, t), q2(Q1...Qn, t), ..., q̇1(Q1...Qn, Q̇1...Q̇n, t), ..., t
)

= L̃(Q1...Qn, Q̇1...Q̇n, t)

show
d

dt

∂L̃

∂Q̇α

− ∂L̃

∂Qα

= 0 , α = 1, ..., n

• ∂L̃

∂Qα
=

∑

µ

( ∂L

∂qµ

∂qµ
∂Qα

+
∂L

∂q̇µ

∂q̇µ
∂Qα

)

• ∂L̃

∂Q̇α

=
∑

µ

∂L

∂q̇µ

∂q̇µ

∂Q̇α

=
∑

µ

∂L

∂q̇µ

∂qµ
∂Qα

• d

dt

∂L̃

∂Q̇α

=
d

dt

(∑

µ

∂L

∂q̇µ

∂qµ
∂Qα

)

=
∑

µ

[

d

dt

( ∂L

∂q̇µ

) ∂qµ
∂Qα

+
∂L

∂q̇µ

d

dt

∂qµ
∂Qα

︸ ︷︷ ︸

]

=
∂q̇µ
∂Qα

−→ d

dt

∂L̃

∂Q̇α

− ∂L̃

∂Qα
=

∑

µ

[

d

dt

( ∂L

∂q̇µ

)

− ∂L

∂qµ
︸ ︷︷ ︸

]

∂qµ
∂Qα

= 0 (q.e.d.)

= 0

Comments:

(i) Special case: n = 3N und Qα ≡ xi
→֒ Lagrangian equations in 3N generalized coordinates⇐⇒ Newtonian
equations in Cartesian coordinates

(ii) Newtonian equations of motion are invariant wrt Galilean transforma-
tions, but not wrt general coordinate transformations!

i.e. miẍi = Fi does not imply mµq̈µ = Fµ
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(iii) Holonomic constraints

assume q = {q1...q3N−k, q3N−k−1...q3N
︸ ︷︷ ︸

}
ignorable

HP : δS = 0 for L = L(q1...q3N , q̇1...q̇3N , t)

⇐⇒ 0 =
dS

dα

∣
∣
∣
α=0

=

3N∑

µ=1

∫ t2

t1

( ∂L

∂qµ
− d

dt

∂L

∂q̇µ

)

ηµ(t) dt

=

3N−k∑

µ=1

∫ t2

t1

( ∂L

∂qµ
− d

dt

∂L

∂q̇µ

)

ηµ(t) dt

+
3N∑

µ=3N−k+1

∫ t2

t1

( ∂L

∂qµ
− d

dt

∂L

∂q̇µ

)

ηµ(t)
︸ ︷︷ ︸

dt

= 0 for µ = 3N − k + 1, ..., 3N

(ignorable coordinates are not varied)

⇐⇒ ∂L

∂qµ
− d

dt

∂L

∂q̇µ
= 0 for µ = 1, ..., 3N − k

−→ HP ⇐⇒ Lagrangian eqs. for 3N − k generalized coordinates ⇐⇒
Newtonian eqs. for 3N Cartesian coordinates + forces of constraint
(see [Tay], Chap. 7.4 for some more details on this)

(iv) Lagrangian recipe

– formulate k (holonomic) constraints

– choose 3N generalized coordinates, identify k of them with con-
straints

– set up L = T − U in 3N Cartesian (or other) coordinates

– work out coordinate transformation to 3N − k generalized coor-
dinates

– find L = L(q1...q3N−k, q̇1...q̇3N−k, t)
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– work out

d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0 (µ = 1, ..., 3N − k)

– solve equations of motion and analyze solutions
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2.4 Conservation theorems revisited

2.4.1 Generalized momenta

definition of a generalized (aka canonical, aka conjugate) momentum

pµ =
∂L

∂q̇µ

example 1: Cartesian coordinates

pi =
∂L

∂ẋi
=
∂T

∂ẋi
=

1

2

∂

∂xi

(∑

j

mj ẋ
2
j

)

= miẋi

−→ usual linear momentum component
example 2: pendulum in xy-plane

L =
m

2
l2q̇2 +mgl cos q , (q = ϕ)

→֒ p =
∂L

∂q̇
= ml2q̇ = ml2ϕ̇ = lz = (r× p)z

−→ z-component of the angular momentum

question: when is ṗµ = 0?

→֒ Lagrangian eqs. :
d

dt

∂L

∂q̇µ
= ṗµ =

∂L

∂qµ

→֒ if
∂L

∂qµ
= 0 ⇒







ṗµ = 0

pµ = ∂L
∂q̇µ

= const

example 1: free particle

L = T =
1

2

∑

i

miẋ
2
i

→֒ ∂L

∂xi
= 0 ⇐⇒ pi = miẋi = const
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example 2: particle on the inside surface of a cone

let’s assume that the cone (angle α) is standing upright with its symmetry
axis parallel to the z-axis.

• constraint tanα =

√
x2+y2

z

• generalized (cylindrical) coordinates

q1 = r =
√

x2 + y2

q2 = ϕ

q3 = tanα− r

z
= 0 (ignorable)

• Lagrangian in Cartesian coordinates

L = T − U =
m

2
(ẋ2 + ẏ2 + ż2)−mgz

• coordinate transformation

x = r cosϕ = q1 cos q2

y = r sinϕ = q1 sin q2

z = r cotα = q1 cotα

ẋ = q̇1 cos q2 − q1q̇2 sin q2
ẏ = q̇1 sin q2 + q1q̇2 cos q2

ż = q̇1 cotα

• Lagrangian in generalized coordinates

L =
m

2
((q̇1 cos q2 − q1q̇2 sin q2)2 + (q̇1 sin q2 + q1q̇2 cos q2)

2 + q̇21 cot
2 α)−mgq1 cotα

=
m

2

(
q̇21

sin2 α
+ q21 q̇

2
2

)

−mgq1 cotα

= L(q1, q̇1, q̇2)

• conserved momentum

∂L

∂q2
= 0 →֒ p2 =

∂L

∂q̇2
= mq21 q̇2 = mr2ϕ = lz = const
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• remaining equation of motion

d

dt

∂L

∂q̇1
=

mq̈21
sin2 α

∂L

∂q1
= mq1q̇

2
2 −mg cotα

=⇒ q̈1 − q1q̇22 sin2 α + g sinα cosα = 0

eliminate q̇2 by using q̇2 =
p2
mq2

1

→֒ q̈1 −
p22 sin

2 α

m2q31
+ g sinα cosα = 0

Comments:

(i) equation of motion in conventional notation

r̈ − l2z sin
2 α

m2r3
+ g sinα cosα = 0

(ii) alternate treatment with (z, ϕ) as generalized coordinates is also pos-
sible (and is very similar due to the linear relation between r and z)

(iii) a coordinate which is conjugate to a conserved momentum (such as
q2 = ϕ in the previous example) is called a cyclic coordinate1

2.4.2 Energy and the Hamiltonian

a) Preparation 1: Euler’s theorem for homogeneous functions

definition: f(x1...xm) is a homogeneous function of degree n:

⇐⇒ f(λx1, λx2, ..., λxm) = λnf(x1...xm)

Euler: if f is a homogeneous function of degree n

=⇒
m∑

i=1

xi
∂f

∂xi
= nf(x1, ..., xm)

1some authors call these coordinates ignorable
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proof: yi = λxi

∢
∂f

∂λ
(y1, ..., ym) =

∑

i

∂f

∂yi

∂yi
∂λ

=
∑

i

∂f

∂yi
xi

=
∂

∂λ
(λnf)

= nλn−1f(x1, ..., xm)

for λ = 1 →֒ yi = xi and

∑

i

xi
∂f

∂xi
= nf(x1, ..., xm) .

b) Preparation 2: a theorem concerning kinetic energy

theorem: For time-independent transformations xi ←→ qµ
(xi = xi(q)) T is a homogeneous function of degree 2 in the generalized
velocities.

proof : T =
1

2

∑

i

miẋ
2
i

=
1

2

∑

i

mi

∑

µ,ν

∂xi
∂qµ

∂xi
∂qν

q̇µ q̇ν

T (λq̇) = λ2T (q̇)

Euler
=⇒

∑

µ

q̇µ
∂T

∂q̇µ
= 2T

c) The Hamiltonian

The Lagrangian is not the total energy of a conservative system (unless
U = 0) and normally not a conserved quantity. Still, it is useful to look
at its total time derivative:
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d

dt
L(q, q̇, t) =

∑

µ

( ∂L

∂qµ
q̇µ +

∂L

∂q̇µ
q̈µ

)

+
∂L

∂t

Lag.eqs.
=

∑

µ

[ d

dt

( ∂L

∂q̇µ

)

q̇µ +
∂L

∂q̇µ

d

dt
q̇µ

]

+
∂L

∂t

=
d

dt

(∑

µ

∂L

∂q̇µ
q̇µ

)

+
∂L

∂t

⇐⇒ d

dt

{∑

µ

pµq̇µ − L
}

= −∂L
∂t

definition: Hamiltonian function

H =
∑

µ

pµq̇µ − L

→֒ dH

dt
= −∂L

∂t

=⇒ if
∂L

∂t
= 0 =⇒







Ḣ = 0

H = const

Discussion:

(i)
[
H
]
=
[
L
]
=
[
E
]
= Joule

(ii) H ≡ E = T + U if

• system conservative
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• at most holonomic constraints

• time-independent transformation xi → qµ

the latter two conditions are normally realized through sclero-
nomic constraints and resting reference frames
proof:

pµ =
∂L

∂q̇µ
=

∂T

∂q̇µ
(
∂U

∂q̇µ
= 0)

→֒ H =
∑

µ

pµq̇µ − L =
∑

µ

q̇µ
∂T

∂q̇µ
− L = 2T − T + U

= T + U

(iii) conditions for H = E = T + U are sufficient, but not necessary

(iv) H = E and Ḣ = 0 are independent
→֒ it is possible that Ḣ = 0 and H 6= E
→֒ it is possible that Ḣ 6= 0 and H = E

(iv) if conditions listed in (ii) are fulfilled and if ∂L
∂t

= 0

=⇒ H = E = T + U = const

d) Examples

(i) one-dimensional harmonic oscillator

T =
m

2
ẋ2 , U =

m

2
ω2x2 , L = T − U =

m

2
(ẋ2 − ω2x2)

→֒ H = pẋ− L = mẋ2 − m

2
ẋ2 +

m

2
ω2x2 =

m

2
(ẋ2 + ω2x2) = E = const

(ii) planar pendulum

L =
m

2
l2ϕ̇2 +mgl cosϕ

with pϕ = ml2ϕ̇

H = pϕϕ̇− L = ml2ϕ̇2 − m

2
l2ϕ̇2 −mgl cosϕ

=
m

2
l2ϕ̇2 −mgl cosϕ = T + U = E = const
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(iii) planar double pendulum

T =
mA +mB

2
l2Aϑ̇

2
A +

mB

2
l2Bϑ̇

2
B +mBlAlBϑ̇Aϑ̇B cos(ϑA − ϑB)

U = −(mA +mB)glA cosϑA −mBglB cosϑB

p1 =
∂L

∂ϑ̇A
= (mA +mB)l

2
Aϑ̇A +mBlAlBϑ̇B cos(ϑA − ϑB)

p2 =
∂L

∂ϑ̇B
= mBl

2
Bϑ̇B +mBlAlBϑ̇A cos(ϑA − ϑB)

H = p1ϑ̇A + p2ϑ̇B − T + U

= (mA +mB)l
2
Aϑ̇

2
A +mBlAlBϑ̇Aϑ̇B cos(ϑA − ϑB)

+ mBl
2
Bϑ̇

2
B +mBlAlBϑ̇Aϑ̇B cos(ϑA − ϑB)

− T + U = T + U = E = const

(iv) bead on a rotating wire

x

y

j  =  w t

rheonomic constraint : y = x tanωt ⇐⇒ ϕ−ωt = 0

generalized coordinates

{
q1 = r
q2 = ϕ− ωt = 0 (ignorable)

• assume U = 0

L = T =
m

2
(ṙ2 + r2ϕ̇2) =

m

2
(ṙ2 + r2ω2) = E

H = pṙ − L =
∂L

∂ṙ
ṙ − L = mṙ2 − m

2
ṙ2 − m

2
r2ω2

=
m

2
(ṙ2 − r2ω2) 6= E

−∂L
∂t

=
dH

dt
= 0 −→ H = const

Lagrangian equation of motion:

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0

‖ ‖
mr̈ −mω2r = 0 ⇐⇒ r̈ − ω2r = 0
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general solution

r(t) = C1e
ωt + C2e

−ωt

ṙ(t) = C1ωe
ωt − C2ωe

−ωt

→֒ H =
m

2

{(

C1ωe
ωt − C2ωe

−ωt
)2

− ω2
(

C1e
ωt + C2e

−ωt
)2}

=
m

2

{
C2

1ω
2e2ωt + C2

2ω
2e−2ωt − 2C1C2ω

2 − C2
1ω

2e2ωt

− C2
2ω

2e−2ωt − 2ω2C1C2

}

= −2mω2C1C2 = const

→֒ L = mω2
(

C2
1e

2ωt + C2
2e

−2ωt
)

= E(t)

• assume U = mgy = mgr sinωt

L = T − U =
m

2
(ṙ2 + r2ω2)−mgr sinωt

→֒ ∂L
∂t

= −mgrω cosωt 6= 0 =⇒ Ḣ 6= 0

H(t) =
m

2
(ṙ2 − r2ω2) +mgr sinωt

6= E(t) =
m

2
(ṙ2 + r2ω2) +mgr sinωt

L,H,E are all different and none is conserved!

(v) particle in a time-dependent homogeneous force field (1D)

F (t) = F0t

→֒ U(x) = −F0xt

L = T − U =
m

2
ẋ2 + F0xt

H = pẋ− L =
m

2
ẋ2 − F0xt = T + U = E = E(t)

(∂L

∂t
= F0x = −Ḣ

)
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2.5 Hamiltonian dynamics

We know that
L = L(q, q̇, t)

and
H =

∑

µ

pµq̇µ − L

Question: H = H(?)

To clarify on what variables H depends consider the total differential

dH = d
(∑

µ

pµq̇µ − L(q, q̇, t)
)

=
∑

µ

{

pµdq̇µ + q̇µdpµ −
∂L

∂qµ
dqµ −

∂L

∂q̇µ
dq̇µ

}

− ∂L

∂t
dt

use Lg.EoM : =
∑

µ

{

q̇µdpµ − ṗµdqµ
}

− ∂L

∂t
dt

= dH(q,p, t)

on the other hand:

dH(q,p, t) =
∑

µ

{

∂H

∂qµ
dqµ +

∂H

∂pµ
dpµ

}

+
∂H

∂t
dt

compare =⇒ ṗµ = −∂H
∂qµ

, q̇µ =
∂H

∂pµ

−→ Hamilton’s (canonical) equations of motion

Remarks:

(i) Hamilton’s EoMs ⇐⇒ Lagrange’s EoMs ⇐⇒ HP ⇐⇒ Newton II
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show equivalence with Lagrange’s EoMs:

L =
∑

µ

pµq̇µ −H

→֒ dL =
∑

µ

(

pµdq̇µ + q̇µdpµ

)

− dH(q,p, t)

=
∑

µ

(

pµdq̇µ + q̇µdpµ −
∂H

∂qµ
dqµ −

∂H

∂pµ
dpµ

)

− ∂H

∂t
dt

use
Hamilton′s EoMs

=
∑

µ

(

pµdq̇µ + q̇µdpµ + ṗµdqµ − q̇µdpµ
)

− ∂H

∂t
dt

= dL(q, q̇, t)

=
∑

µ

( ∂L

∂qµ
dqµ +

∂L

∂q̇µ
dq̇µ

)

+
∂L

∂t
dt

→֒
pµ = ∂L

∂q̇µ

ṗµ = ∂L
∂qµ






=⇒ d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0

(ii) example 1: 1D oscillator

L = T − U =
m

2

(

ẋ2 − ω2x2
)

H = pẋ− L = mẋẋ− m

2
ẋ2 +

m

2
ω2x2 =

m

2

(

ẋ2 + ω2x2
)

= T + U = E

p =
∂L

∂ẋ
= mẋ ⇐⇒ ẋ =

p

m

→֒ H(x, p) =
p2

2m
+
m

2
ω2x2

Note that ẋ has been eliminated to make H a function of x and p. This
is important to obtain the correct EoMs.

EoM : ṗ = −∂H
∂x

= −mω2x

ẋ = ∂H
∂p

= p
m






−→

ẍ+ ω2x = 0
↑

ẍ = ṗ
m

∂H

∂t
= 0 −→ H = E = const
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(iii)
∂H

∂t
= −∂L

∂t
=
dH

dt
⇐⇒ H = const if

∂H

∂t
= 0

(iv) system with n := 3N − k dofs:

Lagrange =̂ n−ODEs of second order

(2n initial conditions qµ(0), q̇µ(0), µ = 1, ..., n)

Hamilton =̂ 2n−ODEs of first order

(2n initial conditions qµ(0), pµ(0), µ = 1, ..., n)

(v) the transformation from L to H is called a Legendre transformation

(vi) example 2: central-force problem in polar coordinates (to be discussed
later)

L = T − U =
m

2

(
ṙ2 + r2ϕ̇2

)
− U(r) = L

(
r, ṙ, ϕ̇

)

EoM :
∂L

∂ṙ
= mṙ ,

∂L

∂r
= mrϕ̇2 − ∂U

∂r
= pr

∂L

∂ϕ̇
= mr2ϕ̇ ,

∂L

∂ϕ
= 0 (ϕ cyclic)

= pϕ

=⇒ mr̈ −mrϕ̇2 +
∂U

∂r
= 0

r2ϕ̈+ 2rṙϕ̇ = 0

H = prṙ + pϕϕ̇− L(r, ṙ, ϕ̇) with ṙ =
pr
m

and ϕ̇ =
pϕ
mr2

= pr
pr
m

+ pϕ
pϕ
mr2

− m

2

(
(pr
m

)2

+ r2
( pϕ
mr2

)2
)

+ U(r)

=
p2r
2m

+
p2ϕ

2mr2
+ U(r)

= H(r, pr, pϕ)
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EoM:

ṗr = −∂H
∂r

=
p2ϕ
mr3

− ∂U

∂r
, ṗϕ = −∂H

∂ϕ
= 0

ṙ =
∂H

∂pr
=

pr
m

, ϕ̇ =
∂H

∂pϕ
=

pϕ
mr2

⇐⇒ Lagrange-EoM

Note:

H = E = m
2
ṙ2 +

p2ϕ
2mr2

+ U(r)

L = T − U = m
2
ṙ2 +

p2ϕ
2mr2
− U(r)







correct but problematic :
only H = H(q,p, t) and L = L(q, q̇, t)

yield correct EoMs!

(vii) “phase space”: populated by

Π = (q1...q3N−k, p1...p3N−k)

−→ phase trajectorie Π(t) characterizes dynamics of the system

Π(t0) = Π0
Hamilton−EoMs−→ Π(t)

state of a mechanical system ⇐⇒ phase Π

−→ all observables are functions of Π : f = f(q,p, t) = f(Π, t)

(viii) further reading: [Tay], Chap. 13
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2.6 Extensions

2.6.1 Generalized forces and potentials

a) Formulation

so far : − ∂U

∂xi
= Fi +

3N∑

j=1

fij ≡ Fi i = 1, ..., 3N

let’s translate this to generalized coordinates:

∢ − ∂U

∂qµ
= −

∑

i

∂U

∂xi

∂xi
∂qµ

=
∑

i

Fi
∂xi
∂qµ

≡ Qµ “generalized force components′′
(

= Qµ(q1...q3N−k, t)
)

standard Lagrangian: L(q, q̇, t) = T (q, q̇, t)− U(q, t)

EoMs :
d

dt

∂L

∂q̇µ
=

d

dt

∂T

∂q̇µ
=
∂L

∂qµ
=
∂T

∂qµ
− ∂U

∂qµ

⇐⇒ d

dt

∂T

∂q̇µ
− ∂T

∂qµ
= Qµ , µ = 1, ..., 3N − k

−→ alternate form of the Lagrangian equations of motion

extension: consider a generalized (velocity-dependent) potential U∗ = U∗(q, q̇, t)

with Qµ = −
(

∂U∗

∂qµ
− d

dt

∂U∗

∂q̇µ

)

−→ d

dt

∂T

∂q̇µ
− ∂T

∂qµ
=

d

dt

∂U∗

∂q̇µ
− ∂U∗

∂qµ

⇐⇒
d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0

for L = T − U∗
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b) Application: charged particle in an electromagnetic (EM) field

• the Lorentzian force

FL = q
(
E+ (v ×B)

)

is obviously velocity dependent. One can construct a generalized po-

tential U∗ such that F i
L = −

(
∂U∗

∂xi
− d

dt
∂U∗

∂ẋi

)

. To do so we need to move

from the electric and magnetic fields E and B to the corresponding
potentials:

• EM potentials

E = −∇φ− ∂A

∂t
B = ∇×A

φ,A: scalar and vector potentials

→֒ FL = q(−∇φ − ∂A

∂t
+ (v × (∇×A)))

• generalized potential

U∗ = q
(
φ− v ·A

)

→֒ F i
L = −

(∂U∗

∂xi
− d

dt

∂U∗

∂ẋi

)

(i = 1, 2, 3)

• Lagrangian

L = T − U∗

=
m

2
v2 − qφ+ qv ·A

one can show (try it!) that the Lagrangian equations of motion are
nothing else but Newton’s equations for the Lorentzian force. This
shows the consistency of the argument.

• Hamiltonian
H = p · v − L
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with the generalized momentum components

pi =
∂L

∂ẋi
= mẋi + qAi

note that the generalized momentum vector is in general not parallel
to the velocity vector (due to the occurrence of the vector potential)

→֒ H = (mv + qA) · v − m

2
v2 + qφ− qv ·A

=
m

2
v2 + qφ

=
1

2m
(p− qA)2 + qφ

= E

obviously, H is the total energy of the system (kinetic energy plus
‘electric’ potential energy; the magnetic field (vector potential) does
not exert work on the charged particle. However, in general (time-
dependent fields) the energy is not conserved.

further reading: [GPS], Chaps. 1.5, 8.1

2.6.2 Friction

Fricitional forces are also velocity dependent, but they cannot be associated
with a generalized potential. However, one can take them into account by
introducing another function into the Lagrangian equations.

assume : F fric
i = −βiẋi

→֒ Qfric
µ =

∑

i

F fric
i

∂xi
∂qµ

= −
∑

i

βiẋi
∂xi
∂qµ

= −
∑

i

βiẋi
∂ẋi
∂q̇µ

= − ∂

∂q̇µ

(∑

i

βi
2
ẋ2i

)

definition: Rayleigh’s dissipation function

R :=
∑

i

βi
2
ẋ2i = R(q, q̇, t)
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Lag. eqs. :
d

dt

∂T

∂q̇µ
− ∂T

∂qµ
= Qµ = Qcon

µ +Qfric
µ

= − ∂U
∂qµ
− ∂R

∂q̇µ

⇐⇒ d

dt

∂L

∂q̇µ
− ∂L

∂qµ
+
∂R

∂q̇µ
= 0

note the difference to the previous case of generalized potentials U∗: in the
present case we have a standard Lagrangian L = T − U and the frictional
force enters the equations of motion thorugh an additional term. In the
former case the velocity-dependent force is accounted for by a non-standard
potential, but the form of the Lagrangian equations of motion is unchanged.

example: free fall with air resistance (1D)

z

m
( 1 - d i m )

L =
m

2
ż2 −mgz

R =
β

2
ż2

=⇒ d

dt

∂L

∂ż
= mz̈ ,

∂L

∂z
= −mg , ∂R

∂ż
= βż

Lag. eq.
=⇒ mz̈ +mg + βż = 0

for the solution of this EoM see, e.g. [FC], Chap. 4.3
for (a bit) more on the dissipation function see [GPS], Chap. 1.5

Let’s end this chapter with mentioning two further topics, which are of
some interest, but which we do not cover (for time reasons).

2.6.3 Lagrange’s equations with undetermined multi-
pliers

This variant can be used if the constraints are given in differential form. It
enables the calculation of the forces of constraint, which is of interest from
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an applied (engineering) point of view.
further reading: [TM], Chap. 7.5; [Tay], Chap. 7.10

2.6.4 d’Alembert’s principle

This is an independent postulate (involving strange things like virtual dis-
placements and virtual work), which can be used to derive the Lagrangian
equations of motion without invoking Hamilton’s principle.
further reading: [GPS], Chap. 1.4



Chapter 3

Applications

3.1 Central-force problem

3.1.1 Preliminary

Consider the following situation:

1. isolated system (Fext = 0)

2. f12 = −f21
= −∇1Ū(|r1 − r2|) = ∇2Ū(|r1 − r2|)

3. no constraints → 6 dofs

→֒ Lagrangian : L = T − Ū =
m1

2
v2
1 +

m2

2
v2
2 − Ū(|r1 − r2|)

gravity : Ū(|r1 − r2|) = −G m1m2

|r1 − r2|
G = 6.67× 10−11 Nm2kg−2

solar system: Sun + eight planets (plus smaller objects)
let’s estimate the mutual forces. First, a few masses (in units of the mass of
the Earth):

Sun M⊙ = 330.000mE

mercury (the smallest planet) MMe = 1
20
mE

jupiter (the biggest planet) MJu = 320mE

58
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∢
force on Earth due to Sun

force on Earth due to X
=
fE⊙

fEX
=
M⊙

mX

R2
XE

R2
⊙E

Venus Mars Jupiter Moon

mX [mE ] 0.81 0,11 320 0.012
Rmin

XE [R⊙E ] 0.27 0.52 4.2 0.0026
fE⊙/fEX 30000 810000 18300 180

=⇒ it is a good (first-order) approximation to view the Earth-Sun problem
as an isolated two-body problem

3.1.2 Reduction of the two-body problem to an effec-

tive one-body problem

momentum conservation : Ṗ = Fext = 0

with P = MV = (m1 +m2)Ṙ = m1v1 +m2v2

R =
m1r1 +m2r2
m1 +m2

centre of mass (CM)

The CM moves uniformly. Three coordinates are necessary to describe this
motion. Three coordinates are then left to describe the internal dynamics of
the system — the relative motion of the two bodies.
Positions wrt. CM: r′k = rk −R (k = 1, 2)

→֒ T =
1

2

∑

k

mkv
2
k =

1

2

∑

k

mk(v
′
k +V)2

=
1

2

∑

k

mkV
2 +

1

2

∑

k

mkv
′2
k +

∑

k

mkv
′
k ·V

︸ ︷︷ ︸

= 0

→֒ T = TCM+T ′ ; TCM =
1

2
MV2 ; T ′ =

1

2

∑

k

mkv
′2
k (holds forN ≥ 2)
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For N = 2 one can further rewrite the expressions:

∢ r′1 = r1 −R = r1 −
m1r1 +m2r2
m1 +m2

=
(m1 +m2)r1 −m1r1 −m2r2

m1 +m2

=
m2

m1 +m2
(r1 − r2) =

m2

m1 +m2
r

r′2 = r2 −R = r2 −
m1r1 +m2r2
m1 +m2

=
(m1 +m2)r2 −m1r1 −m2r2

m1 +m2

= − m1

m1 +m2
r

with r = r1 − r2 = r′1 − r′2 “relative vector′′

→֒ v′
1 =

m2

m1 +m2
v ; v′

2 = −
m1

m1 +m2
v

→֒ T ′ =
m1

2
v′2

1 +
m2

2
v′2

2 =
1

2

m1m2

m1 +m2
v2 =

1

2
µv2

µ =
m1m2

m1 +m2
“reduced mass′′

→ T =
1

2
MV2 +

1

2
µv2 ; Ū = −GµM

r

−→ L =
M

2

(

Ẋ2 + Ẏ 2 + Ż2
)

+
µ

2
ṙ2 +G

µM

r

= L
(

Ṙ, r, ṙ
)

= LCM(Ṙ) + Lrel(r, ṙ)

The first three Lagrangian equations are simple (and contain no news):

∂L
∂X

= ∂L
∂Y

= ∂L
∂Z

= 0 =⇒ PX = ∂L
∂Ẋ

=MẊ = const

(X, Y, Z cyclic) PY = ∂L
∂Ẏ

=MẎ = const

PZ = ∂L
∂Ż

=MŻ = const







total
momentum
conservation
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3.1.3 Relative motion

a) Lagrangian

choose spherical coordinates (r, θ, ϕ)

Lrel(r, θ, ṙ, θ̇, ϕ̇) =
µ

2

[

ṙ2 + (rϕ̇ sin θ)2 + (rθ̇)2
]

+G
µM

r

generalized momenta:

pr =
∂L

∂ṙ
= µṙ

pθ =
∂L

∂θ̇
= µr2θ̇

pϕ =
∂L

∂ϕ̇
= µr2(sin2 θ)ϕ̇ = const (ϕ cyclic)

choose a reference system such that x(0) = y(0) = 0 (→ θ(0) = 0)

y

z

x
j

t  =  0

pϕ(0) = 0 = pϕ(t) =⇒ ϕ̇ = 0

=⇒ 2D motion in plane ϕ = const

→֒ Lrel =
µ

2
(ṙ2 + r2θ̇2) +G

µM

r

now θ is also cyclic and pθ = µr2θ̇ = const

Newtonian view on angular momentum conservation:

l = µ(r× v) = const for central forces

the conservation of the angular momentum vector implies

(i) conservation of direction → motion in a plane (⊥ l)

(ii) conservation of magnitude

l = µ|r× v| = µr2θ̇ = pθ
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this also has a geometrical interpretation: the area per unit time
swept by r(t) is given by

Ȧ =
1

2
|r× v| = l

2µ
= const

this is nothing else but Kepler’s second law (see below).

Let’s work out the equation of motion:

∂Lrel

∂ṙ
= µṙ ,

∂Lrel

∂r
= µrθ̇2 −GµM

r

EoM
=⇒ µr̈ = µrθ̇2 −GµM

r2

⇐⇒ µr̈ =
l2

µr3
−GµM

r2
(3.1)

b) Hamiltonian, energy, and a qualitative discussion of the Kepler orbits

Hrel = prṙ + lθ̇ − Lrel

= .... =
µ

2
(ṙ2 + ṙ2θ̇2)−GµM

r

=
p2r
2µ

+
l2

2µr2
−GµM

r
= Erel = const (energy conservation)

(since − ∂L

∂t
= Ḣ = 0)

= Trad + Trot + Ugrav

= Trad + Ueff(r)

with Ueff(r) =
l2

2µr2
−GµM

r

Trad = Erel − Ueff (r) ≥ 0

⇐⇒ Erel ≥ Ueff (r)
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r

- 1 / r

1 / r 2

E

E 1

E 2

Rr i r a

U e f f ( r )

p Q  =  0

E 3

Figure 3.1: Effective potential of the Kepler problem (schematic)

From now on use E ≡ Erel (and l ≡ pθ)

(i) E = E1 = Ueff (R) −→ Trad = 0

−→ circular orbit with angular velocity θ̇ = l
µR2 = const

(ii) E1 < E = E2 < 0

−→ finite (bounded) orbit in [ri, ra]

(ri, ra : turning points of radial motion, Trad(ri) = Trad(ra) = 0)
with changing angular velocity θ̇ = l

µr2

(iii) E = E3 ≥ 0

infinite (unbounded) orbit in [r3,∞) , (in general r
t→∞−→ ∞)
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∢ l = 0 :

r

E

-  1 / r

E 1

r 1

E 2

(i) E = E1 < 0 finite (bounded) orbit in [0, r1] (cf. free fall)

(ii) E = E2 > 0 infinite (unbounded) orbit (in general r
t→∞−→ ∞)

Remarks:

(i) Analysis refers to ‘quasiparticle’ of mass µ and relative motion.
For the Earth-Sun system we have

µ =
M⊙mE

M⊙ +mE
≈ mE ; r ≈ rE ; M ≈M⊙ ; R ≈ r⊙

and an orbit of type (ii) (for the case l 6= 0)

(ii) Similar analysis is possible for other (central) potentials and is
also useful for quantum-mechanical problems

(iii) Quantitative analysis requires solution of EoM

(iv) Further reading: e.g. [TM], Chap. 8.5, 8.6
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c) Quantitative analysis

starting point : E =
µ

2
ṙ2 +

l2

2µr2
+ U(r)

⇐⇒ ṙ =
dr

dt
= ±

√

2

µ

(

E − U(r)− l2

2µr2

)

−→ t− t0 =

∫ t

t0

dt′ = ±
∫ r

r0

dr′
√

2
µ

(

E − U(r′)− l2

2µr′2

)

−→ inversion yields r(t)

obtain θ(t) from θ̇ =
l

µr2
−→ θ(t)− θ0 =

l

µ

∫ t

t0

dt′

r2(t′)

the problem with this procedure is that the integral cannot be calcu-
lated in closed analytical form (for the gravitational potential).

alternative consideration: analyze orbits r(θ)

ṙ =
dr

dt
=
dr

dθ

dθ

dt
=

l

µr2
dr

dθ
= ±

√

2

µ

(

E − U(r)− l2

2µr2

)

→֒ θ(r)− θ0 =
∫ θ

θ0

dθ′ = ± l
µ

∫ r

r0

dr′

r′2
1

√

2
µ

(

E − U(r′)− l2

2µr′2

)

inversion −→ r(θ)

for U(r) = −k
r

(k = GµM) this integral can be solved by using the
substitution u = 1/r and the indefinite integral

∫
du√

a+ bu+ cu2
=

1√−c arccos
(

− b+ 2cu√
b2 − 4ac

)

One obtains the Kepler orbits: conic sections (in polar coordinates)
with one focus at the origin (look up ‘conic sections’ on wikipedia!)
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1

r
=

1

α

(

1 + ε cos(θ − θ′)
)

α =
l2

µk
> 0

ε =

√

1 +
2El2

µk2
≥ 0 “eccentricity′′

Classification of Kepler orbits

E = −µk2

2l2
≡ Ecirc

ε = 0 circle

r = α = l2

µk
= const

Ecirc < E < 0
0 < ε < 1 ellipse

rmax = α
1−ε

, rmin = α
1+ε

“aphelion′′ “perihelion′′







planets
(+ comets)

ε = 1 E = 0 parabola

ε > 1 E > 0 hyperbola






comets

d) Kepler’s laws (1609, 1619)

I. “Planets move in elliptical orbits about the Sun with the Sun at
one focus.”

II. “The area per unit time swept out by the radius vector from the
Sun to a planet is constant.”

III. “The square of a planet’s period is proportional to the cube of the
major axis of the planet’s orbit.”
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e) Further remarks and references

(i) Instead of using energy conservation (the first integral of the mo-
tion) one can obtain the Kepler orbits directly from the EoM:
Let’s first rewrite r̈:

ṙ =
dr

dθ

dθ

dt
=

l

µr2
dr

dθ

→֒ r̈ =
d

dt

(
l

µr2
dr

dθ

)

= θ̇
d

dθ

(
l

µr2
dr

dθ

)

=
l2

µ2r2
d

dθ

(
1

r2
dr

dθ

)

r=1/u
=

l2

µ2
u2

d

dθ

(

u2
dr

du

du

dθ

)

= − l
2

µ2
u2
d2u

dθ2
.

Plug this result into the EoM (3.1) to obtain

d2u(θ)

dθ2
+ u(θ) =

µk

l2
= α−1.

This is a relatively simple inhomogeneous differential equation
that can be solved without great difficulty (try it!). It yields —
of course — the same results for the Kepler orbits as spelled out
on the previous page ([Tay], Chap. 8.6).

(ii) An analysis of the motion as a function of time can be found in
[GPS], Chap. 3.8.

(iii) It turns out that the Kepler problem has another constant of mo-
tion: the Laplace-Runge-Lenz (LRL) vector A:

A = p× l− µk r
r

where p and l are the linear and the angular momentum vectors
and k = GµM .

proof :
dA

dt

l̇=0
= ṗ× l− µk d

dt

(r

r

)

= −µk
r3

(r× (r× ṙ))− µk
(
rṙ− ṙr
r2

)

= −µkr(r · ṙ)− r
2ṙ+ r2ṙ− ṙrr
r3

= 0
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Note that in the second step Newton’s EoM in the form ṗ = − k
r2

r

r

was used. It looks now as if we had too many conserved quanti-
ties: l,A, E involve seven components, which cannot all be inde-
pendent. It turns out that only five of them are; see [GPS], Chap.
3.9 (this chapter also includes a discussion of further properties of
the LRL vector).

(iv) Relative motion → two-body motions
Keep in mind that the Kepler orbits are associated with the rel-
ative motion of the two-body problem. If m1 ≫ m2 the relative
motion is a good approximation of the motion of m2, while m1 is
always close to the centre of mass (CM). If the two masses are not
that different one has to consider the coordinate transformations
discussed in Sec. 3.1.2. If the orbits are bounded, one obtains
similar ellipses of both bodies about the CM.

(v) Deviations from the ideal elliptical orbits in the solar system are
observable. They are (with decreasing importance) due to

∗ gravitational forces among the planets

∗ effects associated with Einstein’s theory of general relativity

∗ solar oblateness (deviations of the mass distribution of the
sun from a sphere)

(vi) Further reading: [TM], Chap. 8; [Tay], Chap. 8 (both book
chapters contain proofs of Kepler’s third law).
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3.2 Dynamics of rigid bodies

3.2.1 Preparations

definition: “rigid body”
A rigid body is an aggregate of particles (mass points), whose relative dis-
tances are constrained to remain (absolutely) fixed.

∢ rigid body consisting of N mass points at positions (r1...rN):

constraints:

|ri − rj| = cij = const ∀ ij −→
(

N
2

)

= N(N−1)
2

constraints

N

(
N
2

)

3N −
(

N
2

)

2 1 5
3 3 6
4 6 6
5 10 5
6 15 3
7 21 0
8 28 -4

−→
(
N
2

)

constraints cannot be independent!

In fact, one can show that for N > 2 one has (in general)

3N − 6 independent constraints =⇒ 6 dofs

Lagrangian:

L = T − U =
1

2

N∑

i

miv
2
i −

N∑

i=1

U(ri)

Note that internal forces—if present—are neutralized by the constraints and
do not contribute.
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Chasles’ theorem: the general motion of a rigid body is composed of a trans-
lation of a point and a rotation about that point.

The natural choice for the 3 coordinates of the translational motion are the
(Cartesian) coordinates of the CM: R = 1

M

∑

imiri

Let’s introduce three reference frames:

R

S

S '

So: fixed (inertial) system

Sf : non-rotating system with fixed axes and
with CM as origin

Sb: rotating body system also with CM as
origin

coordinates and velocity of i-th mass point:

coordinates and velocity of i-th mass point:

ri

∣
∣
∣
So

= R+ ri

∣
∣
∣
Sf,b

vi

∣
∣
∣
So

= Ṙ+ ω × ri

∣
∣
∣
Sf,b

(for details see [TM],Chap. 10.2)

3.2.2 Kinetic energy and inertia tensor

T =
1

2

∑

i

miv
2
i

∣
∣
∣
So

=
1

2

∑

i

(

Ṙ+ (ω × ri)
∣
∣
∣
Sf,b

)2

=
1

2

∑

i

mi

{

Ṙ2 + 2Ṙ · (ω × ri)
∣
∣
∣
Sf,b

+ (ω × ri)
2
∣
∣
∣
Sf,b

}

=
1

2
MṘ2 + Ṙ ·

(

ω ×
∑

i

miri

∣
∣
∣
Sf,b

)

+
1

2

∑

i

mi(ω × ri)
2
∣
∣
∣
Sf,b

︸ ︷︷ ︸

‖ = 0 in ‖
= Ttrans CM system + Trot
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Trot =
1

2

N∑

i=1

mi

(

ω2r2i − (ω · ri)2
)

Sb

write it out in body system:

=
1

2

N∑

i=1

mi

{ 3∑

j=1

ω2
j r

2
i −

( 3∑

j=1

ωjx
(j)
i

)( 3∑

k=1

ωkx
(k)
i

)}

=
1

2

N∑

i=1

mi

3∑

j,k=1

{

r2i δjk − x(j)i x
(k)
i

}

ωjωk

=
1

2

3∑

j,k=1

Ijkωjωk

with Ijk =

N∑

i=1

mi

{

δjkr
2
i − x(j)i x

(k)
i

}

inertia tensor (inertia matrix)

summary: Trot =
1

2
ωT I ω

3.2.3 Structure and properties of the inertia tensor

a) Continuous mass distributions

mi = ∆mi = ρ(ri)∆Vi −→ ρ(r) d3r = dm

M =
N∑

i=1

mi −→
∫

V

dm =

∫

V

ρ(r) d3r

Ijk =

∫

V

ρ(r)
{

δjkr
2 − xjxk

}

d3r

explicitly : I11 =
∫

V
(x22 + x23)ρ(r) d

3r

I22 =
∫

V
(x21 + x23)ρ(r) d

3r

I33 =
∫

V
(x21 + x22)ρ(r) d

3r







“moments of inertia′′
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I12 = I21 = −
∫

V
x1x2ρ(r) d

3r

I13 = I31 = −
∫

V
x1x3ρ(r) d

3r

I23 = I32 = −
∫

V
x2x3ρ(r) d

3r







“products of inertia′′

note that I is symmetric (Ijk = Ikj)

b) Examples

(i) Homogeneous cube (I)

x 1

x 3

a

ρ(r) =







ρ0 =
M
a3

r ǫ V

0 else

I11 =
M

a3

∫

V

(x22 + x23) d
3r =

M

a3

∫ a
2

− a
2

∫ a
2

− a
2

∫ a
2

− a
2

(x22 + x23) dx1dx2dx3

=
M

a2

∫ a
2

− a
2

dx2

∫ a
2

− a
2

dx3 (x22 + x23)

=
M

a2

(

a

∫ a
2

− a
2

x22 dx2 + a

∫ a
2

− a
2

x23 dx3

)

=
M

a

(x32
3

∣
∣
∣

a
2

− a
2

+
x33
2

∣
∣
∣

a
2

− a
2

)

=
1

6
Ma2 = I22 = I33

I12 = −M
a3

∫

V

x1x2 dx1dx2dx3

= −M
a3

∫ a
2

− a
2

x1 dx1

∫ a
2

− a
2

x2 dx2

∫ a
2

− a
2

dx3

= −M

4a2
x21

∣
∣
∣

a
2

− a
2

x22

∣
∣
∣

a
2

− a
2

= 0 = I13 = I23
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(ii) Homogeneous cube (II)

a

I11 =
M

a3

∫ a

0

∫ a

0

∫ a

0

(
x22 + x23

)
dx1dx2dx2

=
M

a

(

x32
3

∣
∣
∣

a

0
+
x33
2

∣
∣
∣

a

0

)

=
2

3
Ma2 = I22 = I33

I12 = −M
a3

∫ a

0

x1dx1

∫ a

0

x2dx2

∫ a

0

dx3

= −M
a2

(

1

2
x21

∣
∣
∣

a

0

)(

1

2
x22

∣
∣
∣

a

0

)

= −Ma2

4
= I13 = I23

c) Principal axes of inertia

Theorem: For any rigid body and any choice for the origin of the body
system there exists a set of perpendicular (“principal”) axes such that
Ijk = Ikδjk

‘proof’: I is a (real) symmetric matrix ⇒ can be diagonalized

diagonalization of I ⇐⇒ ∃ orthogonal matrix

D−1 = DT ⇐⇒ (D−1)kj = D−1
kj = Djk ,

such that DT I D =





I1 0 0
0 I2 0
0 0 I3



 ⇐⇒
∑

jk

DT
njIjkDkm = δmnIn
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⇐⇒ I D = D





I1 0 0
0 I2 0
0 0 I3



 ⇐⇒
∑

k

IjkDkm =
∑

k

DjkIkδkm

= DjmIm

=
∑

k

δjkDkmIm

⇐⇒
∑

k

(

Ijk − Imδjk
)

Dkm = 0

⇐⇒





I11 − Im I12 I13
I21 I22 − Im I22
I31 I32 I33 − Im









D1m

D2m

D3m



 =





0
0
0



 , m = 1, 2, 3

condition for a nontrivial solution:

det(Ijk − Imδjk) = 0

this (cubic) equation is called secular or characteristic equation.

Diagonalization procedure:

(i) Solve secular equation → obtain “eigenvalues” I1, I2, I3

(ii) Find D by inserting eigenvalues into the system of homogeneous
equations above.

Remarks:

(i) Ik :“principal moments of inertia”; the axes of the corresponding
body system are the principal axes

(ii) Transformation matrix D characterizes a rotation in R3

(iii) The principal moments of inertia are consistent with the equation
Ik =

∫

V
ρ(r)(r2 − x2k) d3r

(iv) Change of I when moving body system from CM to other origin:
Steiner’s parallel-axis theorem ([TM], Chap. 11.6)

(v) Kinetic energy

if Ijk = Ikδjk −→ Trot =
1

2

∑

k

Ikω
2
k
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3.2.4 Generalized coordinates and the Lagrangian

Lagrangian:

L = T − U = Ttrans + Trot − U
=

M

2

(

Ẋ2 + Ẏ 2 + Ż2
)

+
1

2

∑

k

Ikω
2
k − U

This form of the Lagrangian reinforces what is stated by Chasles’ theorem:
the translational motion of the rigid body can be described by the three CM
coordinates, while we need three additional coordinates to characterize the
rotational motion. Recall that we introduced a fixed inertial reference frame
So, a fixed (i.e. non-rotating) reference system Sf with the CM as origin and a
rotating body system Sb, the origin of which is also the CM. The translational
motion of the body (the CM) is described by the transformation from So to
Sf , while rotations correspond to the transformation from Sf to Sb:

So
translation−→ Sf

rotation−→ Sb

Theorem: any rotation can be described by a series of three rotations through
the Eulerian angles (α, β, γ) about designated coordinate axes.

Definition of the Euler angles: (note that other conventions are also in use)

1

2

1 '

2 '

3 ' = 3

1 ' = 1 ' '

2 '

2 ' '

3 '
3 ' ' 3 ' ' ' = 3 ' '

2 ' '

2 ' ' '

1 ' '
1 ' ' '( K n o t e n l i n i e )

1 .  D r e h u n g  ( a ) 2 .  D r e h u n g  ( b ) 3 .  D r e h u n g  ( g )

g

b

a

Figure 3.2: Definition of the Eulerian angles.

Remarks:

• rotations are characterized by orthogonal 3× 3 matrices (det D = 1)
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• rotation matrices form a nonabelian group, i.e., D
1
D

2
6= D

2
D

1

• If we consider a vector r in 3D space, its components in the systems
Sf and Sb are related by

rSb
= D

γ
D

β
D

α
rSf
≡ D rSf

,

where D
α
, D

β
, D

γ
are the rotation matrices that correspond to the

rotations through the Euler angles. They are spelled out in Appendix
A.5.

Using the rotation matrices D
α
, D

β
, D

γ
one can determine the components

of ω in the body system (see Appendix A.5):

ω1 = α̇ sin β sin γ + β̇ cos γ

ω2 = α̇ sin β cos γ − β̇ sin γ
ω3 = α̇ cos β + γ̇

This has to be inserted in the rotational kinetic energy expression in the
Lagrangian. One obtains:

L =
M

2

(
Ẋ2 + Ẏ 2 + Ż2

)

+
1

2

{

I1
(
α̇ sin β sin γ + β cos γ

)2
+ I2

(
α̇ sin β cos γ − β̇ sin γ

)2

+ I3
(
α̇ cos β + γ̇

)2
}

− U
(
X, Y, Z, αβγ

)

= L
(
XY Z, αβγ; ẊẎ Ż, α̇β̇γ̇

)

3.2.5 Equations of motion

translational motion :
d

dt

∂L

∂Ẋ
=
∂L

∂X
⇐⇒ MẌ = − ∂U

∂X
d

dt

∂L

∂Ẏ
=
∂L

∂Y
⇐⇒ MŸ = −∂U

∂Y
d

dt

∂L

∂Ż
=
∂L

∂Z
⇐⇒ MZ̈ = −∂U

∂Z
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example: rigid body in uniform gravitational field

U =
∑

i

migzi

∣
∣
∣
So

= g
∑

i

mizi

∣
∣
∣
So

=MgZ = U(Z)

The EoMs for the translational motion are simple:

Ẍ = Ÿ = 0, Z̈ = −g

If the body rotates (freely) about the CM (see Sec. 3.2.7) one has

∂U

∂α
=
∂U

∂β
=
∂U

∂γ
= 0

→֒ rotational motion is not influenced by U , but is far from being trivial
(this situation is called motion of a ‘free top’).

In the general case, one obtains a set of second-order nonlinear, coupled
differential equations for the Euler angles α, β, γ for the description of the
rotational motion (see Appendix A.5). These EoMs can be summarized as:

I1ω̇1 −
(
I2 − I3

)
ω2ω3 = N1

I2ω̇2 −
(
I3 − I1

)
ω1ω3 = N2

I3ω̇3 −
(
I1 − I2

)
ω1ω2 = N3

Euler’s equations

Ni: components of torque in the body system. For the example with U =
MgZ all torque components Ni vanish.

3.2.6 Angular momentum

For details see [TM], Chap. 11.4 and 11.9
recap: angular momentum of a system of particles (cf. Sec. 1.2.2)

L =
∑

i

(ri × pi)

L̇ =
∑

i

(ri × Fi) = N
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One can show:

L
∣
∣
∣
So

= LCM + L
∣
∣
∣
Sf

= M
(
R×V

)
+
∑

i

mi

(
ri × vi

)
∣
∣
∣
Sf

= M
(
R×V

)
+
∑

i

mi

(
ri × (ω × ri)

)
∣
∣
∣
Sf

The second term can be rewritten by decomposing the vectors in the body
system and using the definition of the inertia tensor. One obtains

L
∣
∣
∣
Sf

= I ω

Note that ths is the angular momentum measured by an observer in Sf who
does not rotate with the rigid body (otherwise he would find L = 0). But
the components of this representation of L refer to the body system Sb, i.e.

Lj

∣
∣
∣
Sb

=
∑

k

Ijkωk

∣
∣
∣
Sb

Remarks:

(i) Lj = Ij ωj in principal axes body system

(ii) in general L ∦ ω → motion of rigid bodies is complicated!

(iii) Trot =
1
2

∑

jk Ijk ωk ωj =
1
2

∑

j Lj ωj =
1
2
L · ω

in principal axes system : Trot =
1

2

∑

j

Lj ωj =
1

2

∑

j

L2
j

Ij

Note that this is the rotational kinetic energy measured by a non-
rotating observer (otherwise she would measure Trot = 0).

If one rewrites L̇ = N in body coordinates one reobtains Euler’s equations

L̇1

∣
∣
∣
Sb

= I1ω̇1 −
(
I2 − I3

)
ω2ω3 = N1

L̇2

∣
∣
∣
Sb

= I2ω̇2 −
(
I3 − I1

)
ω3ω1 = N2

L̇3

∣
∣
∣
Sb

= I3ω̇3 −
(
I1 − I2

)
ω1ω2 = N3
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3.2.7 Applications: symmetric tops

top: a rigid body which is free to turn about a fixed point. The top is
torque-free if the fixed point is the CM and U =MgZ (see above).

a) Free spherical top: I1 = I2 = I3 ≡ I

Euler:→֒ ω̇k = 0 −→ ωk(t) = ωk(0) = const

−→ body rotates uniformly about fixed axis

b) Free symmetric top: I1 = I2 = I, I3 6= I

Two cases can be distinguished:

3
‘prolate’ top: I > I3

3 ‘oblate’ top: I < I3

Euler : Iω̇1 +
(
I − I3

)
ω2ω3 = 0

Iω̇2 −
(
I3 − I

)
ω3ω1 = 0

I3ω̇3 = 0 =⇒ ω3(t) = ω3 = const

define: Ω := I3−I
I

ω3 (= const)

→֒

∣
∣
∣
∣
∣
∣

ω̇1 + Ωω2 = 0

ω̇2 − Ωω1 = 0

∣
∣
∣
∣
∣
∣

(1)

(2)
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decouple:

(1′) : ω̈1 + Ωω̇2 = 0 ⇐⇒ ω̇2 = −
1

Ω
ω̈1

(2′) : − 1

Ω
ω̈1 − Ωω̇1 = 0 ⇐⇒ ω̈1 + Ω2ω1 = 0

→֒ general solution : ω1(t) = C1 cosΩt + C2 sinΩt

(1′′) :
d

dt

(

C1 cosΩt + C2 sinΩt
)

= −Ωω2

⇐⇒ ω2(t) = C1 sinΩt− C2 cosΩt

∢ initial conditions: ω1(0) = A , ω2(0) = 0

ω1(t) = A cosΩt

ω2(t) = A sin Ωt

ω3(t) = ω3 = const

(components of ω wrt Sb)

|ω| =
√

A2 + ω2
3 = const

Visualization:

w ( t )

W  <  0 W  >  0
3

“free precession”

L =





I1ω1

I2ω2

I3ω3



 =





IA cosΩt
IA sinΩt
I3ω3





prolate :
L3

√

L2
1 + L2

2

=
I3ω3

IA
<

ω3

A
=

ω3
√

ω2
1 + ω2

2

oblate :
I3ω3

IA
>

ω3

A
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w

L

3

p r o l a t

w

L

3

o b l a t

ω,L, e3 are in a plane at all times (show e3 · (ω × L) = 0)

Trot =
1

2
L · ω =

1

2

(
IA2 + I3ω

2
3

)
= const

To better understand the motion of the torque-free top one has to look
at it from the viewpoint of the inertial reference frame Sf . This can be
done in two ways:

(i) A qualitative analysis starts from noting that the angular mo-
mentum in Sf is constant (since N = 0). Our solution seems to
contradict this, but the time dependence of the components of L
is a consequence of decomposing it in Sb. When viewed from Sf ,
L is fixed, while ω and the 3-axis of the rigid body are precess-
ing. The motion of the rigid body can be visualized by considering
two cones, the so-called body and space-fixed cones, see, e.g. [TM],
Chap. 11.10 for details and illustrations.

(ii) The quantitative analysis involves the determination of the Eule-
rian angles. This can be done by comparing the explicit solution
obtained for ω in Sb with the general expression derived in Ap-
pendix A.5:

ω =





A cosΩt
A sinΩt
ω3



 =





α̇ sin β sin γ + β̇ cos γ

α̇ sin β cos γ − β̇ sin γ
α̇ cos β + γ̇




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We know from the previous analysis that the angle between L and
the 3-axis of Sb is constant (steady precession). If we choose the
3-axis of Sf to point along L this angle can be identified with the
Euler angle β = β0 =const.

→֒





A cosΩt = α̇ sin β0 sin γ
A sinΩt = α̇ sin β0 cos γ

ω3 = α̇ cos β0 + γ̇





→֒ A2 = α̇2 sin2 β0 ⇒ α̇ = ± A

sin β0
= const

We obtain: 




α(t) = ± A
sinβ0

t + α0

β0 = tan−1
(

IA
I3ω3

)

γ(t) = −Ωt± π
2






Interpretation: α(t) characterizes the steady precession of the
symmetry axis of the rigid body about the 3-axis of Sf , β0 the
constant inclination of the symmetry axis, and γ(t) the rotation
of the rigid body about its symmetry axis.

c) The heavy symmetric top: N 6= 0

(i) Potential energy

U =MgZ
∣
∣
∣
Sf

=MgS cos β = U(β)

(ii) Kinetic energy

Trot =
1

2
[I(ω2

1+ω
2
2)+I3ω

2
3] = . . . =

1

2
[I(α̇2 sin2 β+β̇2)+I3(α̇ cos β+γ̇)2]
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(iii) Lagrangian
L = Trot − U = L(β, α̇, β̇, γ̇)

→֒ α, γ cyclic and

pα =
∂L

∂α̇
= Iα̇ sin2 β + I3(α̇ cos2 β + γ̇ cos β) = const

pγ =
∂L

∂γ̇
= I3(α̇ cos β + γ̇) = I3ω3 = const

→֒ pα = Iα̇ sin2 β + pγ cos β

(iv) Analysis
Instead of working out the EoMs let’s look at the (conserved)
energy of the top and do something similar to what we have done
for the central-force problem in Sec. 3.1:

E = H = Trot+U =
1

2
[I(α̇2 sin2 β+β̇2)+I3(α̇ cos β+γ̇)2]+MgS cos β

We can eliminate α̇ and γ̇ by using the constant momentum com-
ponents and obtain

E =
1

2
Iβ̇2 +

1

2

(pα − pγ cos β)2
I sin2 β

+
1

2

p2γ
I3

+MgS cos β

⇐⇒ E − 1

2

p2γ
I3
≡ E ′ =

1

2
Iβ̇2 + Ueff(β)

with Ueff(β) =
1

2

(pα − pγ cos β)2
I sin2 β

+MgS cos β

A formal solution is obtained from rewriting the equation for E ′ as a
differential equation for β:

β̇ = ±
√

2

I
(E ′ − Ueff(β)) ⇒

∫

dt = ±
∫

dβ
√

2
I
(E ′ − Ueff(β))

Inversion yields β(t), which in turn can be used to obtain α(t) and γ(t)
from integrating

α̇ =
pα − pγ cos β(t)
I sin2 β(t)

γ̇ =
pγ
I3
− α̇ cos β(t)
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Unfortunately, these steps cannot be carried out analytically. A more
qualitative discussion can be based on inspecting Ueff(β), which is a
u-shaped function:

Observations

(i) Shallow minimum at β0: If E ′ = E ′
0 = Ueff(β0) we have steady

precession at a fixed inclination angle. This can be analyzed in

more detail by inspecting dUeff

dβ

∣
∣
∣
β0

= 0.

(ii) For E ′ = E ′
1 > Ueff(β0) the inclination angle varies between β1, β2

with 0 < β1 ≤ β ≤ β2 < π. This is called nutation. Depending
on whether or not α̇ = pα−pγ cos β

I sin2 β
changes sign in the allowed

β-interval three different types of motion can be distinguished
(monotonic precession, looping motion, cusplike motion).

For details and illustrations see [TM], Chap. 11.11.
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3.3 Coupled oscillations

3.3.1 An illustrative example: two coupled oscillators

k 1 k 1 2 k 2

m 1
m 2

q 1 q 2

• T =
m1

2
q̇21 +

m2

2
q̇22

• Uext =
k1
2
q21 +

k2
2
q22

• Ū =
k12
2

(
q1 − q2

)2

→֒ L = T − Uext − Ū
=

m1

2
q̇21 +

m2

2
q̇22 −

1

2

(

k1q
2
1 + k2q

2
2 + k12(q

2
1 − 2q1q2 + q22)

)

Obtain equations of motion:

d

dt

∂L

∂q̇1
= m1q̈1,

∂L

∂q̇1
= −k1q1 − k12(q1 − q2)

d

dt

∂L

∂q̇2
= m2q̈2,

∂L

∂q̇2
= −k2q2 + k12(q1 − q2)

→֒ q̈1 +
k1
m1

q1 +
k12
m1

(q1 − q2) = 0

q̈2 +
k2
m2

q2 +
k12
m2

(q2 − q1) = 0
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• special case #1: k12 = 0 (no coupling)

qλ(t) = Aλ cos(ωλt + δλ), λ = 1, 2; ωλ =

√

kλ
mλ

• special case #2: m1 = m2 ≡ m, k1 = k2 ≡ k

→֒ q̈1 +
k + k12
m

q1 −
k12
m
q2 = 0

q̈2 +
k + k12
m

q2 −
k12
m
q1 = 0

The form of the (internal) potential energy suggests the following trans-
formation to another set of coordinates Qλ:

Q1 =
1

2
(q1 + q2)

Q2 =
1

2
(q1 − q2)

Inserting the inverse transformation into the equations of motion and
adding and subtracting them yields the uncoupled equations and solu-
tions

Q̈1 +
k

m
Q1 = 0, Q1(t) = A1 cos(Ω1t + δ1), Ω1 =

√

k

m

Q̈2 +
k + 2k12

m
Q2 = 0, Q2(t) = A2 cos(Ω2t + δ2), Ω2 =

√

k + 2k12
m

so that we obtain

q1(t) = A1 cos(Ω1t+ δ1) + A2 cos(Ω2t+ δ2)

q2(t) = A1 cos(Ω1t + δ1)− A2 cos(Ω2t+ δ2)

as general solutions.

Discussion

(i) Q1, Q2: “normal coordinates”, Ω1,Ω2: “normal frequencies”
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(ii) pick initial conditions: q1(0) = q2(0) = A, q̇1(0) = q̇2(0) = 0

AA

q1(0) = A = A1 cos δ1 + A2 cos δ2
q2(0) = A = A1 cos δ1 −A2 cos δ2
q̇1(0) = 0 = −A1Ω1 sin δ1 −A2Ω2 sin δ2
q̇2(0) = 0 = −A1Ω1 sin δ1 + A2Ω2 sin δ2

→֒ A1 = A , A2 = 0 , δ1 = 0

→֒ q1(t) = A cosΩ1t = q2(t) → symmetrical
normal mode

(iii) pick initial conditions: q1(0) = −q2(0) = A, q̇1(0) = q̇2(0) = 0

→֒ q1(t) = A cosΩ2t = −q2(t) → antisymmetrical
normal mode

(iv) Note that Ω2 > Ω1 reflects the fact that more energy is stored in
the antisymmetrical than in the symmetrical mode.
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(v) Consider a variant: hold m2 fixed, i.e., introduce the constraint
q2 = 0.

EoM→֒ q̈1 +
k + k12
m

q1 = 0

general solution:

q1(t) = A1 cos(ω0t + δ1), ω0 =

√

k + k12
m

Similarly, one finds for q1 = 0:

q2(t) = A2 cos(ω0t + δ2)

Observation: the ‘common frequency’ ω0 splits into two frequen-
cies according to Ω1 < ω0 < Ω2 if coupling is turned on.

(vi) pick initial conditions: q1(0) = A, q2(0) = q̇1(0) = q̇2(0) = 0

solution:

q1(t) =
A

2

(

cosΩ1t+ cosΩ2t
)

= A cos
(Ω1 + Ω2)t

2
cos

(Ω1 − Ω2)t

2

q2(t) =
A

2

(

cosΩ1t− cosΩ2t
)

= −A sin
(Ω1 + Ω2)t

2
sin

(Ω1 − Ω2)t

2

→ beats
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2520151050

Figure 3.3: Beats for Ω1 = 1, Ω2 = 1.5; black curve: q1(t), red curve: q2(t)

special case: k12 ≪ k (weak coupling)

q1(t) ≈ A cos∆t cosω0t

q2(t) ≈ A sin∆t sinω0t






∆ =

Ω1

2

k12
k
≪ Ω1, ω0

1

0,5

0

-1

t

-0,5

100 20015050 2500

Figure 3.4: Beats for Ω1 = 1, Ω2 = 1.05; black curve: q1(t), red curce: q2(t)
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3.3.2 Lagrangian and equations of motion for coupled
oscillations: general case

Let us characterize the systems of interest by the following properties:

(i) At most holonomic constraints

(ii) Time-independent transformations xi ←→ qµ

(iii) Conservative forces

(iv) System is in vicinity of stable equilibrium

→֒ L = T − Uext − Ū ≡ T − U

H = T + U = E = const

• Taylor-expand U(q) about equilibrium configuration q0 = 0

U(q) ≈ U(0)
︸︷︷︸

+
∑

µ

∂U

∂qµ

∣
∣
∣
0

︸ ︷︷ ︸

qµ +
1

2

∑

µν

∂2U

∂qµ∂qν

∣
∣
∣
0
qµqν + ...

= 0 = 0

≈ 1

2

∑

µν

Uµνqµqν ,
(

Uµν :=
∂2U

∂qµ∂qν

∣
∣
∣
0
= Uνµ

)

• T =
∑

i

mi

2
ẋ2i with ẋi =

∑

µ

∂xi
∂qµ

q̇µ

→֒ T =
1

2

∑

µν

Tµν(q)q̇µq̇ν

with Tµν(q) =
∑

i

mi
∂xi
∂qµ

∂xi
∂qν

= Tνµ(q)

Taylor-expand: Tµν(q) ≈ Tµν(0)+
∑

λ

∂Tµσ
∂qλ

∣
∣
∣
0
qλ ≈ Tµν(0) ≡ Tµν = Tνµ

(0th order for Tµν(q) is consistent with second order for U(q))

→֒ L =
1

2

∑

µν

(

Tµν q̇µq̇ν − Uµνqµqν

)

=
1

2

(

q̇TT q̇− qTUq
)

note that the matrices T and U are symmetrical
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Lagrangian EoMs:

∂L

∂q̇λ
=
∂T

∂q̇λ
=

1

2

∑

µν

Tµν

(

δµλq̇ν + δνλq̇µ

)

=
1

2

∑

ν

Tλν q̇ν +
1

2

∑

µ

Tµλq̇µ

=
∑

µ

Tλµq̇µ

− ∂L
∂qλ

=
∂U

∂qλ
= ... =

∑

µ

Uλµqµ

=⇒
∑

µ

(

Tλµq̈µ + Uλµqµ

)

= 0 , λ = 1, ..., n for n dofs

T q̈+ Uq = 0

explicitly:






T11 .... T1n
...
Tn1 .... Tnn











q̈1
...
q̈n




+






U11 .... U1n
...
Un1 .... Unn











q1
...
qn




 =






0
...
0






3.3.3 Solution of the EoMs

a) Simple situation: uncoupled oscillators

characterized by Tλµ = δλµTλ , Uλµ = δλµUλ

EoMs→֒ q̈λ +
Uλ

Tλ
qλ = 0 , λ = 1, ..., n

solution : qλ(t) = Aλ cos(ωλt + δλ) , ωλ =

√

Uλ

Tλ
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b) Intermediate situation: diagonal T -matrix

characterized by Tλµ = Tλδλµ

EoMs→֒ Tλq̈λ +
∑

µ

Uλµqµ = 0

transformation (i): q̃λ =
√
Tλqλ

EoMs→֒ ¨̃qλ +
∑

µ

Sλµq̃µ = 0

with Sλµ =
Uλµ
√
TλTµ

“dynamical matrix′′

S is symmetric, positive semi-definite matrix, i.e.,

Sλµ = Sµλ , ξTS ξ ≥ 0 ∀ ξ = {ξ1...ξn} 6= {0...0}

=⇒ S can be diagonalized; eigenvalues are real (since S is symmetric)
and non-negative (since S is positive semi-definite)

That is, there is an orthogonal transformation matrix V (V −1 = V T )
such that:

V TS V =






Ω2
1 0

. . .

0 Ω2
n




 = Ω2 , (Ω2

i ≥ 0)

This motivates transformation (ii):

Q = V T q̃ ⇐⇒ q̃ = V Q

EoMs→֒ V Q̈ + S V Q = 0

V TV Q̈ + V TS V Q = 0

⇐⇒ Q̈+ Ω2 Q = 0
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⇐⇒ Q̈λ + Ω2
λQλ = 0 λ = 1, ..., n

solutions : Qλ(t) = Aλ cos(Ωλt+ δλ)

↑ ↑
normal coordinates normal frequencies

Recipe:

(i) Set up and diagonalize S: solve secular equation

det(Sµν − Ω2
Λδµν) = 0

−→ obtain
0 ≤ Ω2

1 < Ω2
2 < ... < Ω2

n

(ii) Insert Ω2
λ into matrix equations to obtain V :

∑

ν

(Sµν − Ω2
λδµν)Vνλ = 0

(iii) Obtain

qµ(t) =
1
√
Tµ

q̃µ(t) =
∑

λ

Vµλ
√
Tµ

Qλ(t)

=
∑

λ

Vµλ
√
Tµ

Aλ cos(Ωλt+ δλ) , µ = 1, ..., n

Applications

example (i): two coupled oscillators again (cf. Sec. 3.3.1)

The Lagrangian can be written as:

→֒ L =
1

2

{

(q̇1, q̇2)

(
m1 0
0 m2

)(
q̇1
q̇2

)

−(q1, q2)
(
k1 + k12 −k12
−k12 k2 + k12

)(
q1
q2

)}



94

diagonalize Sµν = Uµν√
TµTν

−→

∣
∣
∣
∣
∣
∣
∣

k1+k12
m1
− Ω2 − k12√

m1m2

− k12√
m1m2

k2+k12
m2
− Ω2

∣
∣
∣
∣
∣
∣
∣

= 0

⇐⇒
(k1 + k12

m1

− Ω2
)(k2 + k12

m2

− Ω2
)

− k212
m1m2

= 0

=⇒ Ω2
1,2 = +

1

2

(k1 + k12
m1

+
k2 + k12
m2

)

±1
2

[
(k1 + k12

m1
−k2 + k12

m2

)2

+
4k212
m1m2

] 1

2

for the special case m1 = m2 ≡ m , k1 = k2 ≡ k one reobtains

Ω1 =

√

k

m
, Ω2 =

√

k + 2k12
m

example (2): longitudinal vibrations of a linear triatomic molecule

k k

m M

q 1 q 2

m

q 3

• T =
m

2

(

q̇21+q̇
2
3

)

+
M

2
q̇22 =

1

2

∑

µν

Tµν q̇µq̇ν

→֒ T =





m 0 0
0 M 0
0 0 m




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• U =
k

2
(q1 − q2)2 +

k

2
(q3 − q2)2

=
k

2

(

q21 + 2q2 + q23 − 2q1q2 − 2q2q3

)

=
1

2

∑

µν

Uµνqµqν

→֒ U =





k −k 0
−k 2k −k
0 −k k





• Sµν =
Uµν
√
TµTν

→֒ S =








k
m

− k√
mM

0

− k√
mM

2k
m

− k√
mM

0 − k√
mM

k
m








• solve characteristic equation

∣
∣
∣
∣
∣
∣
∣
∣
∣

k
m
− Ω2 − k√

mM
0

− k√
mM

2k
m
− Ω2 − k√

mM

0 − k√
mM

k
m
− Ω2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

⇐⇒
( k

m
− Ω2

){(2k

M
− Ω2

)( k

m
− Ω2

)

− k2

mM

}

− k√
mM

( k√
mM

( k

m
− Ω2

))

= 0

⇐⇒
( k

m
− Ω2

){(2k

M
− Ω2

)( k

m
− Ω2

)

− 2k2

mM

}

= 0

⇐⇒ Ω2
2 =

k

m
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2k2

mM
− Ω2

( k

m
+

2k

M

)

+ Ω4 − 2k2

mM
= 0

⇐⇒ Ω2
(

Ω2 − k

m

(

1 +
2m

M

))

= 0

=⇒ Ω2
1 = 0

Ω2
3 =

k

m

(

1 +
2m

M

)

→֒ Ω1 = 0 , Ω2 =

√

k

m
, Ω3 =

√

k

mM

(

2m+M
)

• transformation matrix (= eigenvectors)

∢






k
m
− Ω2

λ − k√
mM

0

− k√
mM

2k
M
− Ω2

λ − k√
mM

0 − k√
mM

k
m
− Ω2

λ










V1λ
V2λ
V3λ



 =





0
0
0





Ω1 = 0 :
∣
∣
∣
∣
∣
∣
∣

k
m
V11 − k√

mM
V21 = 0

− k√
mM

V11 +
2k
M
V21 − k√

mM
V31 = 0

− k√
mM

V21 +
k
m
V31 = 0

∣
∣
∣
∣
∣
∣
∣

=⇒ V 1 = α





√
m
M

1
√

m
M





Ω2
2 =

k
m

:

∣
∣
∣
∣
∣
∣
∣

− k√
mM

V22 = 0

− k√
mM

V12 + k( 2
M
− 1

m
)V22 − k√

mM
V32 = 0

− k√
mM

V22 = 0

∣
∣
∣
∣
∣
∣
∣

=⇒ V 2 = β





1
0
−1





Ω2
3 =

k
mM

(2m+M) :

∣
∣
∣
∣
∣
∣
∣

−2k
M
V13 − k√

mM
V23 = 0

− k√
mM

V13 − k
m
V23 − k√

mM
V33 = 0

− k√
mM

V23 − 2k
m
V33 = 0

∣
∣
∣
∣
∣
∣
∣

=⇒ V 3 = γ







−1
2

√
M
m

1

−1
2

√
M
m









97

normalization:

=⇒ α2(1 +
2m

M
) = 1 ⇐⇒ α =

√

M

M + 2m

2β2 = 1 ⇐⇒ β =
1√
2

γ2(1 +
1

2

M

m
) = 1 ⇐⇒ γ =

√

2m

M + 2m

=⇒ V =








√
m

M+2m
1√
2
−
√

M
2(M+2m)

√
M

M+2m
0

√
2m

M+2m
√

m
M+2m

− 1√
2
−
√

M
2(M+2m)








• general solution

q1(t) =
1√

M + 2m
Q1(t) +

1√
2m

Q2(t)−
√

M

2m(M + 2m)
Q3(t)

q2(t) =
1√

M + 2m
Q1(t) +

√

2m

M(M + 2m)
Q3(t)

q3(t) =
1√

M + 2m
Q1(t)−

1√
2m

Q2(t)−
√

M

2m(M + 2m)
Q3(t)

with Q1(t) = A1t+B1 (Q̈1 = 0)

Q2(t) = A2 cos(Ω2t+ δ2)

Q3(t) = A3 cos(Ω3t+ δ3)

• initial conditions to bring out normal oscillations

case (i) : q1(0) = q2(0) = q3(0) = 0

q̇1(0) = q̇2(0) = q̇3(0) = v0

=⇒ q1(t) = q2(t) = q3(t) = v0t

→֒ translation of entiremolecule
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case (ii) : q1(0) = A = −q3(0) , q2(0) = 0

q̇1(0) = q̇2(0) = q̇3(0) = 0

=⇒ q1(t) = A cosΩ2t = −q3(t)
q2(t) = 0

case (iii) : q1(0) = q3(0) = −A , q2(0) =
2m

M
A

q̇1(0) = q̇2(0) = q̇3(0) = 0

=⇒ q1(t) = −A cosΩ3t = q3(t)

q2(t) =
2m

M
A cosΩ3t

• visualization of normal models

Ω1 : • −→ • −→ • −→ translation

Ω2 : • −→ • ←− •

Ω3 : ←− • • −→ ←− •

c) General case (just briefly)

• EoMs :
∑

ν

(

Tµν q̈ν+Uµνqν

)

= 0 , µ = 1, ..., n

• ansatz (motivated by case b)):

qν(t) =
∑

λ

VνλQλ(t) with Qλ(t) = Aλ cos(Ωλt + δλ)

→֒ q̈ν =
∑

λ

VνλQ̈λ

= −
∑

λ

VνλΩ
2
λQλ

insert→֒
∑

νλ

(

Uµν − Ω2
λTµν

)

VνλQλ = 0
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since Qλ are linearly independent, one has:

∑

ν

(

Uµν − Ω2
λTµν

)

Vνλ = 0 (∗)

• This set of equations has a nontrivial solution if:

det
(

Uµν − Ω2
λTµν

)

= 0

=⇒ obtain 0 ≤ Ω2
1 < ... < Ω2

n

• Insert Ω2
λ into (∗) to obtain the transformation matrix V . One

imposes the orthonormality relations

V TT V = 1

and verifies
V TU V = Ω2

i.e. U and T are diagonalized simultaneously.

Details: [TM], Chap. 12.4, [GPS], Chap. 6



Appendix A

Supplementary material

A.1 Energy conservation of a conservative N-

particle system

∢ ṗk = Fk +

N∑

i=1

fki

−→
∑

i,k

fki · vk =
∑

k

mk · v̇k · vk −
∑

k

Fk · vk

rhs : =
1

2

d

dt

∑

k

mkv
2
k +

∑

k

∇kUk ·
drk
dt

=
d

dt

∑

k

(mk

2
v2
k + Uk(rk(t))

)

=
d

dt

∑

k

(

Tk + Uk

)

lhs : =
1

2

∑

i 6=k

(

fki · vk + fik · vi

)

=
1

2

∑

i 6=k

fki ·
(
vk − vi

)

100
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define : rki := rk − ri

vki := vk − vi

→֒ ∇kŪki = ∇kiŪki = −∇iŪik

→֒ fki = −∇kŪki = −∇kiŪki

−→ lhs =
1

2

∑

i 6=k

fki · vki

= −1
2

∑

i 6=k

∇kiŪki ·
drki
dt

= − d

dt

1

2

∑

i 6=k

Ūki

(
rki(t)

)

−→ lhs− rhs = 0
d

dt

(∑

k

(Tk + Uk) +
1

2

∑

i 6=k

Ūki

)

= 0

d

dt

(

T + U
)

= 0.

A.2 Does S assume a minimum for the actual

path (i.e., is the stationary point always

a minimum)?

(i) Prelude: U(x) = 0

L =
m

2
ẋ2 = T

The (Lagrangian) equation of motion ẍ = 0 implies ẋ = v0 = const.
Recall the definition of neighbouring paths

x(α, t) = x(t) + αη(t)

ẋ(α, t) = ẋ(t) + αη̇(t)

with η(t1) = η(t2) = 0
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∢ S(α) =
m

2

∫ t2

t1

ẋ2(α, t) dt

=
m

2

∫ t2

t1

ẋ2(t) dt+mα

∫ t2

t1

ẋ(t)η̇(t) dt+
m

2
α2

∫ t2

t1

η̇2(t) dt

= Sactual +mαv0

∫ t2

t1

η̇(t) dt+
m

2
α2

∫ t2

t1

η̇2(t) dt

= Sactual +mαv0η(t)
∣
∣
t2

t1
+
m

2
α2

∫ t2

t1

η̇2(t) dt

= Sactual + β

with β = m
2
α2
∫ t2
t1
η̇2dt > 0. We do have a minimum, since S(α) >

Sactual.

(ii) Let’s add a potential

L =
m

2
ẋ2 − U(x)

and Taylor-expand U around the stationary point

U(x(α, t)) = U(x)
∣
∣
α=0

+
dU

dx

∣
∣
α=0

αη +
1

2

d2U

dx2
∣
∣
α=0

α2η2 + . . .

= U(x)− F (x)αη − 1

2
F ′(x)α2η2 + . . .

insert this into S:

S(α) =

∫ t2

t1

L(x(α, t), ẋ(α, t)) dt

=
m

2

∫ t2

t1

ẋ2(t) dt+mα

∫ t2

t1

ẋ(t)η̇(t) dt+
m

2
α2

∫ t2

t1

η̇2(t) dt

−
∫ t2

t1

U(x(t))dt + α

∫ t2

t1

F (x(t))η(t)dt+
α2

2

∫ t2

t1

F ′(x(t))η2(t)dt+O(α3)

=

∫ t2

t1

(m

2
ẋ2 − U(x)

)

dt+ α

∫ t2

t1

(mẋη̇ + F (x)η) dt

+
α2

2

∫ t2

t1

(
mη̇2 + F ′(x)η2

)
dt+O(α3)

= Sactual + αm

∫ t2

t1

(ẋη̇ + ẍη) dt+
α2

2

∫ t2

t1

(
mη̇2 + F ′(x)η2

)
dt+O(α3)
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I1 =

∫ t2

t1

(ẋη̇ + ẍη)dt =

∫ t2

t1

ẋη̇dt+ ẋη
∣
∣
t2

t1
−
∫ t2

t1

ẋη̇dt = 0

I2 =

∫ t2

t1

(
mη̇2 + F ′(x)η2

)
dt = m

∫ t2

t1

η̇2dt+

∫ t2

t1

F ′(x)η2dt

the term linear in α always vanishs, but the second-order term can be
anything, since the second integral in I2 can be positive or negative (or
zero). Let’s check two simple examples:

Example 1: homogeneous gravitational field

F = −mg → F ′(x) = 0

→֒ I2 = m

∫ t2

t1

η̇2dt > 0

in this case we have a minimum, since S(α) > Sactual.

Example 2: linear force

F = kx → F ′(x) = k > 0

→֒ I2 =

∫ t2

t1

(mη̇2 + kη2)dt > 0

this also yields a minimum, but for the harmonic oscillator i.e., for
F = −kx we can’t draw any conclusion from our expression for I2.
Indeed, one can show that—for long enough time intervals—the sta-
tionary point of the action is a saddle point in this case.

A.3 Differential constraints
m differential constraints can be characterized by

3N∑

j=1

aijdxj + ait dt = 0 ; i = 1, ..., m

e.g. rolling disk (previous example (vii) in Chap. 2.2.1.a):

dxCM ± (R cosϕ)dψ = 0 , dyCM ± (R sinϕ)dψ = 0



104

→֒ a11 = 1 , a21 = 1

a14 = ±R cosϕ , a24 = ±R sinϕ
all other coefficients including a1t and a2t are zero

if ait







= 0 scleronomic

6= 0 rheonomic

∢ total differential of a holonomic constraint f(x1, ..., x3N) = 0

df(x1, ..., x3N) =
3N∑

j=1

∂f

∂xj
dxj

= ∇f · dr (with ∇ = (∂x1
, ..., ∂x3N

))

→֒ reobtain f by integration

f(x1, ..., x3N ) =

∫

df =

∫

∇f · dr (path− independent)

⇐⇒ ∂2f

∂xj∂xl
=

∂2f

∂xl∂xj

(fulfilled, if f sufficiently well-behaved)

=⇒ differential constraints
3N∑

j=1

aij dxj + ait dt are holonomic

if
∂aij
∂xl

=
∂ail
∂xj

;
∂aij
∂xt

=
∂ait
∂xj

proof: for holonomic constraint fi(x1, ..., x3N , t) = 0

dfi =
3N∑

j=1

∂fi
∂xj

dxj +
∂fi
∂t

dt = 0

=

3N∑

j=1

aij dxj + ait dt with aij =
∂fi
∂xj

, ait =
∂fi
∂t
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f fulfils integrability conditions

∂2fi
∂xj∂xl

=
∂2fi
∂xl∂xj

,
∂2fi
∂xj∂t

=
∂2fi
∂t∂xj

‖ ‖ ‖ ‖
∂ail
∂xj

=
∂aij
∂xl

,
∂ait
∂xj

=
∂aij
∂t

q.e.d.

One can use the integrability conditions to check that the constraints of the
rolling disk are not holonomic.

A.4 Details regaring the proof of equivalence

of Newton’s and Lagrange’s equations of

motion

Let us look more closely at the force components in

∂L

∂xi
= −∂U

∂xi
= Fi +

3N∑

j=1

fij

Basically this is a (tedious) counting exercise:

(i) external forces:

N∑

k=1

Uk(rk) = U1(x1x2x3) + U2(x4x5x6)

+ ... + UN (x3N−2x3N−1x3N )

≡ Uext(x1, . . . , x3N )

→ external force on k-th mass point: Fk = −∇kUk →֒ m-th component
of the force on k-th mass point:

Fm
k = − ∂

∂xmk
Uk = −

∂Uext

∂xmk
, (k = 1, ..., N ; m = 1, 2, 3)
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explicitly:










F 1
k ≡ F x

k = − ∂
∂xk

Uext

F 2
k ≡ F y

k = − ∂
∂yk
Uext

F 3
k ≡ F z

k = − ∂
∂zk
Uext











⇐⇒ Fi = −
∂Uext

∂xi
, i = 1, ..., 3N

F x
1 F y

1 F z
1 F x

2 F y
2 F z

2 ... F x
N F y

N F z
N

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

F1 F2 F3 F4 F5 F6 F3N−2 F3N−1 F3N

(ii) internal forces (note that Ūik = Ūki):

fij = ∇iŪij = −∇jŪij

N∑

j<i

Ūij(ri − rj) = Ū21(x1x2x3, x4x5x6)

+ Ū31(x1x2x3, x7x8x9) + ... + Ū32(x4x5x6, x7x8x9) + ...

+...+ ŪN,N−1(x3N−5x3N−4x3N−3, x3N−2x3N−1x3N )

some examples:

− ∂Ū
∂x1

= − ∂

∂x1
(Ū21 + Ū31 + ...+ ŪN1)

= − ∂

∂x1
(Ū12 + Ū13 + ...+ Ū1N ) = fx

1 =

N∑

j=1

fx
1j

=
3N∑

j=1

f1j

− ∂Ū
∂x5

= − ∂

∂x5
(Ū21 + Ū23 + Ū24 + ...+ Ū2N )

= f y
2 =

N∑

j=1

f y
2j =

3N∑

j=1

f5j

...
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− ∂Ū

∂x3N
= − ∂

∂x3N
(ŪN1 + ŪN2 + ...+ ŪN,N−1)

= f z
N =

N∑

j=1

f z
Nj =

3N∑

j=1

f3Nj

→֒ in general : − ∂Ū

∂xi
= ................ =

3N∑

j=1

fij

with matrix fji(3N × 3N) of the following structure:

i \ j 1 2 3 4 5 6 7 .. .. 3N-2 3N-1 3N

1 0 0 0 x 0 0 x .. .. x 0 0
2 0 0 0 0 x 0 0 .. .. 0 x 0
3 0 0 0 0 0 x 0 .. .. 0 0 x
4 x 0 0 0 0 0 x .. .. x 0 0
5 0 x 0 0 0 0 0 .. .. 0 x 0
6 0 0 x 0 0 0 0 .. .. 0 0 x
7 x 0 0 x 0 0 0 0 0 .
...

...
... 0 .. ..

...
3N

summary: fij 6= 0 if 1 ≤ i = j ± 3n ≤ 3N ; (n = 1, ..., N − 1)

it follows : −∂Ū
∂xi

=

3N∑

j=1

fij , i = 1, ..., 3N

⇐⇒ −∇iŪij = fij , i, j = 1, ..., N

=⇒ d

dt

∂L

∂ẋi
− ∂L

∂xi
= ṗi − Fi −

3N∑

j=1

fij = 0

⇐⇒ ṗk = Fk +

N∑

j=1

fkj , k = 1, ..., N
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A.5 Some details regarding rigid body dy-

namics

Any rotation about a fixed point can be represented by a series of three
rotations about designated axes through the Eulerian angles (α, β, γ).

coordinates coordinates
wrt. Sf wrt. Sb

(x′1, x
′
2, x

′
3)

α−→ (x′′1, x
′′
2, x

′′
3)

β−→ (x′′′1 , x
′′′
2 , x

′′′
3 )

γ−→ (x1, x2, x3)

rSb
= D

γ
D

β
D

α
rSf

= D rSf

Each rotation is characterized by a rotation matrix. The product of these
matrices (note their order) characterizes the resulting rotation.

rotation 1: rotate reference system Sf counterclockwise through α about x′3-
axis:





x′′1
x′′2
x′′3



 =





cosα sinα 0
− sinα cosα 0

0 0 1









x′1
x′2
x′3



 (r′′ = D
α
rSf

)

rotation 2: rotate the new system (S ′′) counterclockwise through β about
x′′1-axis:





x′′′1
x′′′2
x′′′3



 =





1 0 0
0 cos β sin β
0 − sin β cos β









x′′1
x′′2
x′′3



 (r′′′ = D
β
r′′)

rotation 3: rotate the new system (S ′′′) counterclockwise through γ about
x′′′3 -axis:





x1
x2
x3



 =





cos γ sin γ 0
− sin γ cos γ 0

0 0 1









x′′′1
x′′′2
x′′′3



 (rSb
= D

γ
r′′′)
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multiply the matrices:

D = D
γ
D

β
D

α

=





cosα cos γ − sinα cos β sin γ sinα cos γ + cosα cos β sin γ sin β sin γ
− cosα sin γ − sinα cos β cos γ − sinα sin γ + cosα cos β cos γ sin β cos γ

sinα sin β − cosα sin β cos β





Since the total rotation consists of three rotations, the angular velocity
vector ω (which describes the orientation of the body system) is the sum of
the three corresponding angular velocity vectors:

ω = ωα + ωβ + ωγ

We need to find the components of these vectors in the body system.

(i) ωα points in x′3-direction in the fixed system (cf. rotation 1). The com-
ponents of this vector in the body system are obtained from applying
D = D

γ
D

β
D

α
:

→֒ ωα

∣
∣
∣
Sb

=





α̇1

α̇2

α̇3



 = D





0
0
α̇





︸ ︷︷ ︸

=





α̇ sin β sin γ
α̇ sin β cos γ
α̇ cos β





‖

D
γ
D

β





0
0
α̇





(note that the componentes
of ωα do not change
during the first rotation)

(ii) ωβ points in x′′1 = x′′′1 direction in the systems S ′′ and S ′′′. The com-
ponents with respect to the body system are obtained from applying
D

γ
:

ωβ

∣
∣
∣
Sb

=





β̇1
β̇2
β̇3



 = D
γ





β̇
0
0



 =





β̇ cos γ

−β̇ sin γ
0




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(iii) ωγ points in x′′′3 = x3 direction in the S ′′′ and the body system:

ωγ

∣
∣
∣
Sb

=





γ̇1
γ̇2
γ̇3



 = D
γ





0
0
γ̇



 =





0
0
γ̇





Collecting terms yields ωk = α̇k + β̇k + γ̇k

ω1 = α̇ sin β sin γ + β̇ cos γ

ω2 = α̇ sin β cos γ − β̇ sin γ
ω3 = α̇ cos β + γ̇

In the principal axes body system we have

Trot =
1

2

∑

k

Ikω
2
k

=
1

2

(

I1ω
2
1 + I2ω

2
2 + I3ω

2
3

)

=
1

2

{

I1
(
α̇2 sin2 β sin2 γ + β̇2 cos2 γ + 2α̇β̇ sin β sin γ cos γ

)

+ I2
(
α̇2 sin2 β cos2 γ + β̇2 sin2 γ − 2α̇β̇ sin β sin γ cos γ

)

+ I3
(
α̇2 cos2 β + γ̇2 + 2α̇γ̇ cos β

)}

= Trot

(

βγ, α̇β̇γ̇
)

We are after the Lagrangian equations of motion for

Lrot = Trot − U = Trot

(

βγ, α̇β̇γ̇
)

− U
(

αβγ
)

d

dt

(

∂Trot
∂q̇k

)

− ∂Trot
∂qk

= −∂U
∂qk





q1 = α
q2 = β
q3 = γ





Let’s look at one coordinate explicitly:

q3 = γ :

• ∂Trot
∂γ̇

= I3
(
γ̇+ α̇ cos β

)
→֒ d

dt

∂Trot
∂γ̇

= I3

(

α̈ cos β− α̇β̇ sin β+ γ̈
)
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• ∂Trot
∂γ

= I1

(

α̇2 sin2 β sin γ cos γ − β̇2 sin γ cos γ + α̇β̇ sin β cos2 γ − α̇β̇ sin β sin2 γ
)

+ I2

(

− α̇2 sin2 β sin γ cos γ + β̇2 sin γ cos γ − α̇β̇ sin β cos2 γ + α̇β̇ sin β sin2 γ
)

→֒ EoM:

I3
(
α̈ cos β − α̇β̇ sin β + γ̈

)

−
(
I1 − I2

){(
α̇2 sin2 β − β̇2

)
sin γ cos γ

+ α̇β̇ sin β
(
cos2 γ − sin2 γ

)}

= −∂U
∂γ

One can show that this equation can be written in the form

I3ω̇3 −
(
I1 − I2

)
ω1ω2 = −

∂U

∂γ

let’s check:

ω1ω2 =
(
α̇ sin β sin γ + β̇ cos γ

)(
α̇ sin β cos γ − β̇ sin γ

)

= α̇2 sin2 β sin γ cos γ + α̇β̇ sin β cos2 γ

− β̇2 sin γ cos γ − α̇β̇ sin β sin2 γ

=
(
α̇2 sin β − β̇2

)
sin γ cos γ + α̇β̇ sin β

(
cos2 γ − sin2 γ

)

Similar (quite lengthy) calculations yield EoMs for q1 = α and q2 = β:

q1 = α :

α̈
{(
I1 sin

2 γ + I2 cos
2 γ
)
sin2 β + I3 cos

2 β
}

+ 2α̇β̇
(
I1 sin

2 γ + I2 cos
2 γ − I3

)
sin β cos β

+ 2α̇β̇
(
I1 − I2

)
sin2 β sin γ cos γ + β̈

(
I1 − I2

)
sin β sin γ cos γ

+ β̇2
(
I1 − I2

)
cos β sin γ cos γ

+ β̇γ̇
{(
I1 − I2

)(
cos2 γ − sin2 γ

)
− I3

}

sin β + γ̈I3 cos β = −∂U
∂α
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q2 = β :

α̈
(
I1 − I2

)
sin β sin γ cos γ

+ α̇2
(
I3 − I1 sin2 γ − I2 cos2 γ

)
sin β cos β

+ α̇γ̇
{

I3 +
(
I1 − I2

)(
cos2 γ − sin2 γ

)}

sin β

+β̈
(
I1 cos

2 γ + I2 sin
2 γ
)
− 2β̇γ̇

(
I1 − I2

)
sin γ cos γ = −∂U

∂β

Let’s consider linear combinations of the three EoMs:

I1ω̇1 −
(
I2 − I3

)
ω2ω3 =

1

sin β

(

− sin γ
∂U

∂α
− sin β cos γ

∂U

∂β
+ cos β sin γ

∂U

∂γ

)

≡ N1

I2ω̇2 −
(
I3 − I1

)
ω3ω1 =

1

sin β

(

− cos γ
∂U

∂α
+ sin β sin γ

∂U

∂β
+ cos β cos γ

∂U

∂γ

)

≡ N2

Summary (using N3 = −∂U
∂γ

):

I1ω̇1 −
(
I2 − I3

)
ω2ω3 = N1

I2ω̇2 −
(
I3 − I1

)
ω3ω1 = N2

I3ω̇3 −
(
I1 − I2

)
ω1ω2 = N3







Euler equations

i.e.
∑

k

εijk
(
Ikω̇k −Nk

)
−
(
Ii − Ij

)
ωiωj = 0

with ǫijk =







1 (ijk) even permutation of (1, 2, 3)

−1 (ijk) odd permutation of (1, 2, 3)

0 else
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