
PHYS3001
Classical Mechanics

Robert L. Dewar
Department of Theoretical Physics

Research School of Physical Sciences & Engineering
The Australian National University

Canberra ACT 0200
Australia

robert.dewar@anu.edu.au

Version 1.51

May 20, 2001. c© R.L. Dewar 1998–2001.



ii



Contents

1 Generalized Kinematics 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalized coordinates . . . . . . . . . . . . . . . . . . . . . 2
1.3 Example: The ideal fluid . . . . . . . . . . . . . . . . . . . . . 5
1.4 Variational Calculus . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Example: Geodesics . . . . . . . . . . . . . . . . . . . 9
1.4.2 Trial function method . . . . . . . . . . . . . . . . . . 10

1.5 Constrained variation: Lagrange multipliers . . . . . . . . . . 10
1.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Rigid rod . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Ecliptic . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Curvature of geodesics . . . . . . . . . . . . . . . . . . 13

2 Lagrangian Mechanics 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Generalized Newton’s 2nd Law . . . . . . . . . . . . . . . . . 16

2.2.1 Generalized force . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Generalized equation of motion . . . . . . . . . . . . . 20
2.2.3 Example: Motion in Cartesian coordinates . . . . . . . 21

2.3 Lagrange’s equations (scalar potential case) . . . . . . . . . . 21
2.3.1 Hamilton’s Principle . . . . . . . . . . . . . . . . . . . 23

2.4 Lagrangians for some Physical Systems . . . . . . . . . . . . . 24
2.4.1 Example 1: 1-D motion—the pendulum . . . . . . . . 24
2.4.2 Example 2: 2-D motion in a central potential . . . . . 25
2.4.3 Example 3: 2-D motion with time-varying constraint . 26
2.4.4 Example 4: Atwood’s machine . . . . . . . . . . . . . . 27
2.4.5 Example 5: Particle in e.m. field . . . . . . . . . . . . 28
2.4.6 Example 6: Particle in ideal fluid . . . . . . . . . . . . 29

2.5 Averaged Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Example: Harmonic oscillator . . . . . . . . . . . . . . 31

2.6 Transformations of the Lagrangian . . . . . . . . . . . . . . . 32

iii



iv CONTENTS

2.6.1 Point transformations . . . . . . . . . . . . . . . . . . . 32
2.6.2 Gauge transformations . . . . . . . . . . . . . . . . . . 34

2.7 Symmetries and Noether’s theorem . . . . . . . . . . . . . . . 35
2.7.1 Time symmetry . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.1 Coriolis force and cyclotron motion . . . . . . . . . . . 37
2.8.2 Anharmonic oscillator . . . . . . . . . . . . . . . . . . 38

3 Hamiltonian Mechanics 41
3.1 Introduction: Dynamical systems . . . . . . . . . . . . . . . . 41
3.2 Mechanics as a dynamical system . . . . . . . . . . . . . . . . 41

3.2.1 Lagrangian method . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Hamiltonian method . . . . . . . . . . . . . . . . . . . 43
3.2.3 Example 1: Scalar potential . . . . . . . . . . . . . . . 45
3.2.4 Example 2: Physical pendulum . . . . . . . . . . . . . 47
3.2.5 Example 3: Motion in e.m. potentials . . . . . . . . . . 48
3.2.6 Example 4: The generalized N -body system . . . . . . 48

3.3 Time-Dependent and Autonomous Hamiltonian systems . . . 50
3.4 Hamilton’s Principle in phase space . . . . . . . . . . . . . . . 50
3.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Constraints and moving coordinates . . . . . . . . . . . 53
3.5.2 Anharmonic oscillator phase space . . . . . . . . . . . 53
3.5.3 2-D motion in a magnetic field . . . . . . . . . . . . . . 53

4 Canonical transformations 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Example 1: Adiabatic Oscillator . . . . . . . . . . . . . 60
4.2.2 Example 2: Point transformations . . . . . . . . . . . . 62

4.3 Infinitesimal canonical transformations . . . . . . . . . . . . . 63
4.3.1 Time evolution . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Symmetries and integrals of motion . . . . . . . . . . . 66
4.4.2 Perturbation theory . . . . . . . . . . . . . . . . . . . . 66

4.5 Action-Angle Variables . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Properties of canonical transformations . . . . . . . . . . . . . 69

4.6.1 Preservation of phase-space volume . . . . . . . . . . . 69
4.6.2 Transformation of Poisson brackets . . . . . . . . . . . 74

4.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.1 Coriolis yet again . . . . . . . . . . . . . . . . . . . . . 74
4.7.2 Difference approximations . . . . . . . . . . . . . . . . 75



CONTENTS v

5 Answers to Problems 77
5.1 Chapter 1 Problems . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Chapter 2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Chapter 3 Problems . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Chapter 4 Problems . . . . . . . . . . . . . . . . . . . . . . . . 93

6 References and Index 99



vi CONTENTS



Chapter 1

Generalized coordinates and
variational principles

1.1 Introduction

In elementary physics courses you were introduced to the basic ideas of New-
tonian mechanics via concrete examples, such as motion of a particle in a
gravitational potential, the simple harmonic oscillator etc. In this course we
will develop a more abstract viewpoint in which one thinks of the dynamics of
a system described by an arbitrary number of generalized coordinates, but in
which the dynamics can be nonetheless encapsulated in a single scalar func-
tion: the Lagrangian, named after the French mathematician Joseph Louis
Lagrange (1736–1813), or the Hamiltonian, named after the Irish mathe-
matician Sir William Rowan Hamilton (1805–1865).

This abstract viewpoint is enormously powerful and underpins quantum
mechanics and modern nonlinear dynamics. It may or may not be more ef-
ficient than elementary approaches for solving simple problems, but in order
to feel comfortable with the formalism it is very instructive to do some ele-
mentary problems using abstract methods. Thus we will be revisiting such
examples as the harmonic oscillator and the pendulum, but when examples
are set in this course please remember that you are expected to use the ap-
proaches covered in the course rather than fall back on the methods you
learnt in First Year.

In the following notes the convention will be used of italicizing the first use
or definition of a concept. The index can be used to locate these definitions
and the subsequent occurrences of these words.

The present chapter is essentially geometric. It is concerned with the de-
scription of possible motions of general systems rather than how to calculate

1



2CHAPTER 1. GENERALIZED COORDINATES AND VARIATIONAL PRINCIPLES

physical motions from knowledge of forces. Thus we call the topic generalized
kinematics .

1.2 Generalized coordinates

Suppose we have a system of N particles each moving in 3-space and in-
teracting through arbitrary (finite) forces, then the dynamics of the total
system is described by the motion of a point q ≡ {qi|i = 1, 2, . . . , 3N} =
{x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN} in a 3N -dimensional generalized config-
uration space. The number n = 3N of generalized coordinates qi is called
the number of degrees of freedom. No particular metric is assumed—e.g.
we could equally as well use spherical polar coordinates (see Fig. 1.1), qi =
{r1, θ1, φ1,r2, θ2, φ2, . . .,rN , θN , φN}, or a more general curvilinear coordinate
system.

In other systems the generalized

x

θ
r

φ

y

z r

Figure 1.1: Position vector
r in Cartesian and Spherical
Polar coordinates.

“coordinates” need not even be spa-
tial coordinates—e.g. they could
be the charges flowing in an elec-
trical circuit. Thus the convenient
vector-like notation q for the array
of generalized coordinates should not
be confused with the notation r for
the position vector in 3-space. Of-
ten the set of generalized coordi-
nates is simply denoted q, but in
these notes we use a bold font, dis-
tinguishing generalized coordinate

arrays from 3-vectors by using a bold slanted font for the former and a bold
upright font for the latter.

Vectors are entities independent of which coordinates are used to repre-
sent them, whereas the set of generalized coordinates changes if we change
variables. For instance, consider the position vector of a particle in Carte-
sian coordinates x, y, z and in spherical polar coordinates r, θ, φ in Fig. 1.1.
The vector r represents a point in physical 3-space and thus does not change
when we change coordinates,

r = xex + yey + zez = rer(θ, φ) . (1.1)

However its representation changes, because of the change in the unit basis
vectors from ex, ey, ez to er, eφ and ez. On the other hand, the sets of
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generalized coordinates rC ≡ {x, y, z} and rsph ≡ {r, φ, z} are distinct enti-
ties: they are points in two different (though related) configuration spaces
describing the particle.

q
1

q
2

q
3 
... q

n

q(t)q(t
1
)

q(t
2
)

Figure 1.2: Some possible paths in configuration space, each
parametrized by the time, t.

Sometimes the motion is constrained to lie within a submanifold of the
full configuration space.1 For instance, we may be interested in the motion
of billiard balls constrained to move within a plane, or particles connected
by rigid rods. In such cases, where there exists a set of (functionally inde-
pendent) constraint equations, or auxiliary conditions

fj(q) = 0 , j = 1, 2, · · · ,m < n , (1.2)

the constraints are said to be holonomic.
Each holonomic constraint reduces the number of degrees of freedom by

one, since it allows us to express one of the original generalized coordinates as

1A manifold is a mathematical space which can everywhere be described locally by a
Cartesian coordinate system, even though extension to a global nonsingular curvilinear
coordinate system may not be possible (as, e.g. on a sphere). A manifold can always be
regarded as a surface embedded in a higher dimensional space.
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a function of the others and delete it from the set. For instance, for a particle
constrained to move in a horizontal plane (an idealized billiard table), the
vertical position z = const is a trivial function of the horizontal coordinates
x and y and the configuration space becomes two dimensional, q = {x, y}.

Consider the set of all conceivable paths through configuration space (see
Fig. 1.2). Each one may be parametrized by the time, t: q = q(t). By
differentiating eq. (1.2) with respect to time, we find a set of constraints on
the generalized velocities, q̇i ≡ dqi/ dt, which we write in differential notation
as

n∑
i=1

∂fj(q)

∂qi
dqi ≡

∂fj(q)

∂q
· dq = 0 , (1.3)

where ∂f/∂q ≡ {∂f/∂q1, . . . , ∂f/∂qn} and we use the shorthand dot-product
notation

a·∂f
∂b

≡
n∑

i=1

ai
∂f

∂bi
, (1.4)

where ai and bi are arbitrary configuration space variables.
The condition for functional independence of the m constraints is that

there be m nontrivial solutions of eq. (1.3), i.e. that the rank of the matrix
∂fj(q)/∂qi be its maximal possible value, m.

Note that not all such differential constraints lead to holonomic con-
straints. If we are given constraints as a general set of differential forms

n∑
i=1

ω
(j)
i (q) dqi = 0 , (1.5)

then we may or may not be able to integrate the constraint equations to the
form eq. (1.2). When we can, the forms are said to be complete differentials.
When we cannot, the constraints are said to be nonholonomic.

The latter case, where we cannot reduce the number of degrees of freedom
by the number of constraints, will not be considered explicitly in these notes.
Furthermore, we shall normally assume that any holonomic constraints have
been used to reduce {qi|i = 1, . . . , n} to a minimal, unconstrained set. How-
ever, we present in Sec. 1.5 an elegant alternative that may be used when
this reduction is not convenient, or is impossible due to the existence of
nonholonomic constraints.

There are situations where there is an infinite number of generalized
coordinates. For instance, consider a scalar field (such as the instaneous
amplitude of a wave), ψ(r, t). Here ψ is a generalized coordinate of the
system and the position vector r replaces the index i. Since r is a continuous
variable it ranges over an infinite number of values.
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r
0

x(r
0
,t)

Figure 1.3: A fluid element advected from point r = r0 at time t = 0
to r = x(r0, t) at time t.

1.3 Example: The ideal fluid

As an example of a system with both an infinite number of degrees of freedom
and holonomic constraints, consider a fluid with density field ρ(r, t), pressure
field p(r, t) and velocity field v(r, t).

Here we are using the Eulerian description, where the fluid quantities ρ,
p and v are indexed by the actual position, r, at which they take on their
physical values at each point in time.

However, we can also index these fields by the initial position, r0, of
the fluid particle passing through the point r = x(r0, t) at time t (see
Fig. 1.3). This is known as the Lagrangian description. (cf. the Schrödinger
and Heisenberg pictures in quantum mechanics.) We shall denote fields in
the Lagrangian description by use of a subscript L: ρL(r0, t), pL(r0, t) and
vL(r0, t) = ∂tx(r0, t).

The field x(r0, t) may be regarded as an infinite set of generalized coor-
dinates, the specification of which gives the state of the fluid at time t. The
Jacobian J(r0, t) of the change of coordinates r = x(r0, t) is defined by

J ≡ ∂x

∂x0

· ∂x
∂y0

× ∂x

∂z0

=

∣∣∣∣∣∣∣
∂x
∂x0

∂y
∂x0

∂z
∂x0

∂x
∂y0

∂y
∂y0

∂z
∂y0

∂x
∂z0

∂y
∂z0

∂z
∂z0

∣∣∣∣∣∣∣ , (1.6)

where x0, y0 and z0 are Cartesian components of r0 and x, y and z are the
corresponding components of x(r0, t). This gives the change of volume of
a fluid element with initial volume dV0 and final volume (at time t) dV
through

dV = J(r0, t) dV0 . (1.7)

To see this, consider dV0 = dx0 dy0 dz0 to be an infinitesimal rectangular
box, as indicated in Fig. 1.3, with sides of length dx0, dy0, dz0. This fluid
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element is transformed by the effect of compression and shear to an infinites-
imal parallelipiped with sides given by dlx ≡ dx0∂x/∂x0, dly ≡ dy0∂x/∂y0,
dlz ≡ dz0∂x/∂z0. The volume of such a parallepiped is dlx· dly× dlz =
J dx0 dy0 dz0 2.

Are the fields ρ(r0, t) and p(r0, t) additional generalized coordinates which
need to be specified at each point in time? In an ideal fluid (i.e. one with
no dissipation, also called an Euler fluid) the answer is no, because mass
conservation, ρ dV = ρ0 dV0, allows us to write

ρL(r0, t) = ρ0(r0)/J(r0, t) , (1.8)

while the ideal equation of state p( dV )γ = p0( dV0)
γ, where γ is the ratio of

specific heats, gives
pL(r0, t) = p0(r0)/J

γ(r0, t) , (1.9)

where ρ0 and p0 are the initial density and pressure fields, respectively. These
are, by definition, fixed in time, so the only time dependence occurs through
the Jacobian J , which we showed in eq. (1.6) to be completely determined
by the Lagrangian displacement field x(r0, t). Thus eqs. (1.8) and (1.9) have
allowed us to reduce the number of generalized coordinate fields from 5 to
3 (the three components of x)—mass conservation and the equation of state
have acted as holonomic constraints.

Note: Mass conservation is valid even for nonideal fluids (provided they
are not reacting and thus changing from one state to another). However,
in a fluid with finite dissipation, heat will be generated by the motion and
entropy will be increased in each fluid element, thus invalidating the use
of the adiabatic equation of state. Further, the entropy increase depends
on the complete path of the fluid through its state space, not just on its
instantaneous state. Thus the pressure cannot be holonomically constrained
in a nonideal fluid.

Remark 1.1 A useful model for a hot plasma is the magnetohydrodynamic
(MHD) fluid—an ideal fluid with the additional property of being a perfect
electrical conductor. This leads to the magnetic field B(r, t) being “frozen in”
to the plasma, so that BL also obeys a holonomic constraint in the Lagrangian
representation, but as it is a vector constraint it is a little too complicated to
give here.

1.4 Variational Calculus

Consider an objective functional I[q], defined on the space of all differentiable
paths between two points in configuration space, q(t1) and q(t2), as depicted
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in Fig. 1.2

I[q] ≡
∫ t2

t1

dt f(q(t), q̇(t), t) . (1.10)

(As we shall wish to integrate by parts later, we in fact assume the paths to
be slightly smoother than simply differentiable, so that q̈ is also defined.)

We suppose our task is to find a path that makes I a maximum or min-
imum (or at least stationary) with respect to neighbouring paths. Thus we
vary the path by an amount δq(t): q(t) 7→ q(t) + δq(t). Then the first
variation, δI, is defined to be the change in I as estimated by linearizing in
δq:

δI[q] ≡
∫ t2

t1

dt

[
δq(t)·∂f

∂q
+ δq̇(t)·∂f

∂q̇

]
. (1.11)

Our first task is to evaluate eq. (1.11) in terms of δq(t). The crucial step
here is the lemma “delta and dot commute”. That is

δq̇ ≡ dδq

dt
. (1.12)

To prove this, simply go back to definitions: δq̇ ≡ d(q + δq)/ dt− dq/ dt =
dδq/ dt 2.

We can now integrate by parts to put δI in the form

δI[q] =

[
δq·∂f

∂q̇

]t2

t1

+

∫ t2

t1

dt δq(t)·δf
δq

. (1.13)

This consists of an endpoint contribution and an integral of the variational
derivative δf/δq, defined by

δf

δq
≡ ∂f

∂q
− d

dt

∂f

∂q̇
. (1.14)

Remark 1.2 The right-hand side of eq. (1.14) is also sometimes called the
functional derivative or Fréchet derivative of I[q]. When using this termi-
nology the notation δI/δq is used instead of δf/δq so that we can write
eq. (1.13), for variations δqi which vanish in the neighbourhood of the end-
points, as

δI[q] ≡
∫ t2

t1

dt
n∑

i=1

δqi(t)
δI

δqi
(t) ,

≡
(
δq,

δI

δq

)
, (1.15)
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which may be taken as the most general defining equation for δI/δq. The
inner product notation (·, ·) used above is a kind of infinite-dimensional dot
product where we not only sum over the index i, but integrate over the “index”
t. If we recall that the change in the value of a field defined on 3-space, e.g.
ϕ(r), due to an arbitrary infinitesimal change δr is δϕ = δr·∇ϕ, which may
be regarded as the definition of the gradient ∇ϕ, we see that the functional
derivative δI/δq may be thought of, by analogy, as an infinite-dimensional
gradient defined on the function space of paths.

A typical variational problem is to make I extremal or stationary under
arbitrary variations δq(t) holding the endpoints fixed. That is, we require

δI = 0 ∀ functions δq(t) such that δq(t1) = δq(t2) = 0 . (1.16)

Note that this condition does not necessarily require I to be a minimum
or maximum—it can be a kind of saddle point in function space, with some
ascending and some descending “directions”. To determine the nature of
a stationary point we would need to expand I to second order in δq—the
second variation.

In the class of variations in eq.

t + ε

q
i

t − ε

Figure 1.4: A time-localized
variation in generalized coor-
dinate qi with support in the
range t− ε to t+ ε.

(1.16), the endpoint contribution in
eq. (1.13) vanishes, leaving only
the contribution of the integral over
t. Since δq(t) is arbitrary, we can,
in particular, consider functions with
arbitrarily localized support in t, as
indicated in Fig. 1.4. (The support
of a function is just the range over
which it is nonzero.) As ε → 0,
δf/δq(t) becomes essentially con-
stant over the support of q in eq. (1.13)
and we can move it outside the in-
tegral. Clearly then, I can only be

stationary for all such variations if and only if the variational derivative van-
ishes for each value of t and each index i

δf

δq
= 0 . (1.17)

These n equations are known as the Euler–Lagrange equations . Some-
times we encounter variational problems where we wish to extremize I under
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variations of the endpoints as well, δq(t1) 6= δq(t2) 6= 0. In such cases we
see from eq. (1.13) that, in addition to eq. (1.17), stationarity implies the
natural boundary conditions

∂f

∂q̇
= 0 (1.18)

at t1 and t2.

1.4.1 Example: Geodesics

In the above development we have used the symbol t to denote the indepen-
dent variable because, in applications in dynamics, paths in configuration
space are naturally parametrized by the time. However, in purely geometric
applications t is simply an arbitrary label for the position along a path, and
we shall in this section denote it by τ to avoid confusion.

The distance along a path is given by integrating the lengths dl of in-
finitesimal line elements, given a metric tensor gi,j such that

( dl)2 =
n∑

i,j=1

dqi gi,j dqj . (1.19)

In terms of our parameter τ , we thus have the length l as a functional of the
form discussed above

l =

∫ τ2

τ1

dτ

[
n∑

i,j=1

q̇igi,j(q, τ)q̇j

]1/2

. (1.20)

A geodesic is a curve between two points whose length (calculated using
the given metric) is stationary against infinitesimal variations about that
path. Thus the task of finding geodesics fits within the class of variational
problems we have discussed, and we can use the Euler–Lagrange equations
to find them. Perhaps the best known result on geodesics is the fact that the
shortest path between two points in a Euclidean space (one where gi,j = 0
for i 6= j and gi,j = 1 for i = j) is a straight line. Another well-known result
is that the shortest path between two points on the surface of a sphere is a
great circle (see Problem 1.6.3 for a general theorem on geodesics on a curved
surface).

Geodesics are not necessarily purely geometrical objects, but can have
physical interpretations. For instance, suppose we want to find the shape of
an elastic string stretched over a slippery surface. The string will adjust its
shape to minimize its elastic energy. Since the elastic potential energy is a
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monotonically increasing function of the length of the string, the string will
settle onto a geodesic on the surface.

Geodesics also play an important role in General Relativity, because the
world line of a photon is a geodesic in 4-dimensional space time, with the
metric tensor obeying Einstein’s equations. If the metric is sufficiently dis-
torted, it can happen that there is not one, but several geodesics between
two points, a fact which explains the phenomenon of gravitational lensing
(multiple images of a distant galaxy behind a closer massive object).

1.4.2 Trial function method

One advantage of the variational formulation of a problem is that we can
use trial function methods to find approximate solutions. That is, we can
make a clever guess, q(t) = qK(t, a1, a2, . . . , aK) as to the general form of
the solution, using some specific function qK (the trial function) involving a
finite number of parameters ak, k = 1, . . . , K. Then we evaluate the integral
in eq. (1.11) (analytically or numerically) and seek a stationary point of
the resulting function I(a1, a2, . . . , aK) in the K-dimensional space of the
parameters ak. Varying the ak the variation in I is

δI =
K∑

k=1

∂I

∂ak

δak . (1.21)

The condition for a stationary point is thus

∂I

∂ak

= 0, k = 1, . . . , K , (1.22)

that is, that the K-dimensional gradient of I vanish.
Since the true solution makes the objective functional I stationary with

respect to small variations, if our guessed trial function solution is close to
the true solution the error in I will be small. (Of course, because qK may
not be a reasonable guess for the solution in all ranges of the parameters,
there may be spurious stationary points that must be rejected because they
cannot possibly be close to a true solution—see the answer to Problem 2.8.2
in Sec. 5.2.)

1.5 Constrained variation: Lagrange multi-

pliers

As mentioned in Sec. 1.2 we normally assume that the holonomic constraints
have been used to reduce the dimensionality of the configuration space so
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that all variations are allowed. However, it may not be possible to do an
analytic elimination explicitly. Or it may be that some variables appear in
a symmetric fashion, making it inelegant to eliminate one in favour of the
others.

Thus, even in the holonomic case, it is worth seeking a method of han-
dling constrained variations : when there are one or more differential auxiliary
conditions of the form δf (j) = 0. In the nonholonomic case it is mandatory
to consider such variations because the auxiliary conditions cannot be inte-
grated.

We denote the dimension of the configuration space by n. Following
eq. (1.5) we suppose there are m < n auxiliary conditions of the form

δf (j) ≡ ω(j)(q, t)·δq = 0 . (1.23)

The vectors ω(j), j = 1, . . . ,m may be assumed linearly independent (else
some of the auxiliary conditions would be redundant) and thus span an m-
dimensional subspace, Vm(t), of the full n-dimensional linear vector space
Vn occupied by the unconstrained variations. Thus the equations eq. (1.23)
constrain the variations δq to lie within an (n − m)-dimensional subspace,
Vn−m(q, t), complementary to Vn.

The variational problem we seek to solve is to find the conditions (the
generalizations of the Euler–Lagrange equations) under which the objective
functional I[q] is stationary with respect to all variations δq in Vm(q, t).
Apart from this restriction on the variations, the problem is the same as that
described by eq. (1.16). The generalization of eq. (1.17) is

δf

δq
·δq = 0 ∀ δq ∈ Vn−m(q, t) . (1.24)

If there are no constraints, so that m = 0, then δf/δq is orthogonal to
all vectors in Vn and the only solution is that δf/δq ≡ 0. Thus eq. (1.24)
and eq. (1.17) are equivalent in this case. However, if m < n, then δf/δq
can have a nonvanishing component in the subspace Vm and eq. (1.17) is no
longer valid.

An elegant solution to the problem of generalizing eq. (1.17) was found by
Lagrange. Expressed in our linear vector space language, his idea was that
eq. (1.24) can be regarded as the statement that the projection, (δf/δq)n−m,
of δf/δq into Vn−m(q, t) is required to vanish.

However, we can write (δf/δq)n−m as δf/δq−(δf/δq)m, where (δf/δq)m

is the projection of δf/δq into Vm. Now observe that we can write any vector
in Vm as a linear superposition of the ω(j) since they form a basis spanning
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this space. Thus we write (δf/δq)m = −
∑
λjω

(j), or, equivalently,(
δf

δq

)
m

+
m∑

j=1

λjω
(j) = 0 , (1.25)

where the λj(q, t) coefficients, as yet to be determined, are known as the
Lagrange multipliers . They can be determined by dotting eq. (1.25) with each
of the m basis vectors ω(j), thus providing m equations for the m unknowns.
Alternatively, we can express this variationally as[(

δf

δq

)
m

+
m∑

j=1

λjω
(j)

]
·δq = 0 ∀ δq ∈ Vm(q, t) . (1.26)

Since −
∑
λjω

(j) is the projection into Vm of δf/δq, the projection into
the complementary subspace Vn−m is found by subtracting (−

∑
λjω

(j)) from
δf/δq. That is, (

δf

δq

)
n−m

=
δf

δq
+

m∑
j=1

λjω
(j)

= 0 , (1.27)

where the Vn−m component of the second equality follows by eq. (1.24) and
the Vn component from eq. (1.25). Thus we have n generalized Euler–
Lagrange equations, but they incorporate the m equations for the, so far
arbitrary, λ(j) implicit in eq. (1.25). Thus we really only gain (n−m) equa-
tions from the variational principle, which is at it should be because we also
get m kinematic equations from the constraint conditions—if we got more
from the variational principle the problem would be overdetermined.

The variational formulation of the second equality in eq. (1.27) is[
δf

δq
+

m∑
j=1

λjω
(j)

]
·δq = 0 ∀ δq ∈ Vn(q, t) . (1.28)

That is, by using the Lagrange multipliers we have turned the constrained
variational problem into an unconstrained one.

In the holonomic case, when the auxiliary conditions are of the form in
eq. (1.2), we may derive eq. (1.28) by unconstrained variation of the modified
objective functional

I∗[q] ≡
∫ t2

t1

dt (f +
m∑

j=1

λjfj) . (1.29)

The auxiliary conditions also follow from this functional if we require that it
be stationary under variation of the λj.



1.6. PROBLEMS 13

1.6 Problems

1.6.1 Rigid rod

Two particles are connected by a rigid rod so they are constrained to move a
fixed distance apart. Write down a constraint equation of the form eq. (1.2)
and find suitable generalized coordinates for the system incorporating this
holonomic constraint.

1.6.2 Ecliptic

Suppose we know that the angular momentum vectors rk×mkṙk of a system
of particles are all nonzero and parallel to the z-axis in a particular Cartesian
coordinate system. Write down the differential constraints implied by this
fact, and show that they lead to a set of holonomic constraints. Hence write
down suitable generalized coordinates for the system.

1.6.3 Curvature of geodesics

Show that any geodesic r = x(τ) on a two-dimensional manifold S : r =
X(θ, ζ) embedded in ordinary Euclidean 3-space, where θ and ζ are arbi-
trary curvilinear coordinates on S, is such that the curvature vector κ(τ) is
everywhere normal to S (or zero).

The curvature vector is defined by κ ≡ de‖/ dl, where e‖(τ) ≡ dx/ dl is
the unit tangent vector at each point along the path r = x(τ).

Hint: First find f(θ, ζ, θ̇, ζ̇) = l̇, the integrand of the length functional,
l =

∫
f dτ (which involves finding the metric tensor in θ, ζ space in terms of

∂X/∂θ and ∂X/∂ζ). Then show that, for any path on S,

∂f

∂θ̇
= e‖·

∂X

∂θ

(and similarly for the ζ̇ derivative) and

∂f

∂θ
= e‖·

d

dτ

∂X

∂θ
,

and again similarly for the ζ derivative.
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Chapter 2

Lagrangian Mechanics

2.1 Introduction

The previous chapter dealt with generalized kinematics—the description of
given motions in time and space. In this chapter we deal with one formula-
tion (due to Lagrange) of generalized dynamics—the derivation of differential
equations (equations of motion) for the time evolution of the generalized co-
ordinates. Given appropriate initial conditions, these (in general, nonlinear)
equations of motion specify the motion uniquely. Thus, in a sense, the most
important task of the physicist is over when the equations of motion have
been derived—the rest is just mathematics or numerical analysis (important
though these are). The goal of generalized dynamics is to find universal forms
of the equations of motion.

From elementary mechanics we are all familiar with Newton’s Second
Law, F = ma for a particle of mass m subjected to a force F and undergoing
an acceleration a ≡ r̈. If we know the Cartesian components Fi(r, ṙ, t),
i = 1, 2, 3, of the force in terms of the Cartesian coordinates x1 = x, x2 = y,
x3 = z and their first time derivatives then the equations of motion are the
set of three second-order differential equations mẍi − Fi = 0.

To give a physical framework for developing our generalized dynamical
formalism we consider a set of N Newtonian point masses, which may be con-
nected by holonomic constraints so the number n of generalized coordinates
may be less than 3N . Indeed, in the case of a rigid body N is essentially
infinite, but the number of generalized coordinates is finite. For example,
the generalized coordinates for a rigid body could be the three Cartesian
coordinates of the centre of mass and three angles to specify its orientation
(known as the Euler angles), so n = 6 for a rigid body allowed to move freely
in space.

15
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Whether the point masses are real particles like electrons, composite par-
ticles like nuclei or atoms, or mathematical idealizations like the infinitesimal
volume elements in a continuum description, we shall refer to them generi-
cally as “particles”.

Having found a very general form of the equations of motion (Lagrange’s
equations), we then find a variational principle (Hamilton’s Principle) that
gives these equations as its Euler–Lagrange equations in the case of no fric-
tional dissipation. This variational principle forms a basis for generalizing
even beyond Newtonian mechanics (e.g. to dynamics in Special Relativity).

2.2 Generalized Newton’s 2nd Law

2.2.1 Generalized force

Let the (constrained) position of each of the N particles making up the sys-
tem be given as a function of the n generalized coordinates q by rk = xk(q, t),
k = 1, . . . , N . If there are holonomic constraints acting on the particles, the
number of generalized coordinates satisfies the inequality n ≤ 3N . Thus, the
system may be divided into two subsystems—an “exterior” subsystem de-
scribed by the n generalized coordinates and an “interior” constraint subsys-
tem whose (3N−n) coordinates are rigidly related to the q by the geometric
constraints.

In a naive Newtonian approach we would have to specify the forces act-
ing on each particle (taking into account Newton’s Third Law, “action and
reaction are equal and opposite”), derive the 3N equations of motion for
each particle and then eliminate all the interior subsystem coordinates to
find the equations of motion of the generalized coordinates only. This is
clearly very inefficient, and we already know from elementary physics that
it is unnecessary—we do not really need an infinite number of equations to
describe the motion of a rigid body. What we seek is a formulation in which
only the generalized coordinates, and generalized forces conjugate to them,
appear explicitly. All the interior coordinates and the forces required to main-
tain their constrained relationships to each other (the “forces of constraint”)
should be implicit only.

To achieve this it turns out to be fruitful to adopt the viewpoint that
the total mechanical energy (or, rather, its change due to the performance of
external work, W , on the system) is the primitive concept, rather than the
vector quantity force. The basic reason is that the energy, a scalar quantity,
needs only specification of the coordinates for its full description, whereas
the representation of the force, a vector, depends also on defining a basis
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set on which to resolve it. The choice of basis set is not obvious when we
are using generalized coordinates. [Historically, force came to be understood
earlier, but energy also has a long history, see e.g. Ernst Mach “The Science
of Mechanics” (Open Court Publishing, La Salle, Illinois, 1960) pp. 309–312,
QA802.M14 Hancock. With the development of Lagrangian and Hamiltonian
methods, and thermodynamics, energy-based approaches can now be said to
be dominant in physics.]

To illustrate the relation between force and work, first consider just
one particle. Recall that the work δW done on the particle by a force
F as the particle suffers an infinesimal displacement δr is δW = F·δr ≡
Fxδx+Fyδy+Fzδz. A single displacement δr does not give enough informa-
tion to determine the three components of F, but if we imagine the thought
experiment of displacing the particle in the three independent directions,
δr = δx ex, δy ey and δz ez, determining the work, δWx, δWy, δWz, done in
each case, then we will have enough equations to deduce the three compo-
nents of the force vector, Fx = δWx/δx, Fy = δWy/δy, Fz = δWz/δz. [If
δW can be integrated to give a function W (r) (which is not always possi-
ble), then we may use standard partial derivative notation: Fx = ∂W/∂x,
Fy = ∂W/∂y, Fz = ∂W/∂z.]

The displacements δx ex, δy ey and δz ez are historically called virtual
displacements . They are really simply the same displacements as used in
the mathematical definition of partial derivatives. Note that the virtual
displacements are done at a fixed instant in time as if by some “invisible
hands”, which perform the work δW : this is a thought experiment—the
displacements are fictitious, not dynamical.

Suppose we now transform from the Cartesian coordinates x, y, z to an
arbitrary curvilinear coordinate system q1, q2, q3 (the superscript notation
being conventional in tensor calculus). Then an arbitrary virtual displace-
ment is given by δr =

∑
i δq

i ei, where the basis vectors ei are in general not
orthonormal. The corresponding “virtual work” is given by δW =

∑
i δq

i Fi,
where Fi ≡ ei·F. As in the Cartesian case, this can be used to determine the
generalized forces Fi by determining the virtual work done in three indepen-
dent virtual displacements.

In tensor calculus the set {Fi} is known as the covariant representation of
F, and is in general distinct from an alternative resolution, the contravariant
representation {F i}. (You will meet this terminology again in relativity
theory.) The energy approach shows that the covariant, rather than the
contravariant, components of the force form the natural generalized forces
conjugate to the generalized coordinates qi.

Turning now to the N -particle system as a whole, the example above
suggests we define the set of n generalized forces, {Qi}, conjugate to each
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of the n degrees of freedom qi, to be such that the virtual work done on the
system in displacing it by an arbitrary infinitesimal amount δq at fixed time
t is given by

δW ≡
n∑

i=1

Qiδqi ∀ δq . (2.1)

We now calculate the virtual work in terms of the displacements of the N
particles assumed to make up the system and the forces Fk acting on them.
The virtual work is

δW =
N∑

k=1

Fk·δrk

=
n∑

i=1

δqi

(
N∑

k=1

Fk·
∂xk

∂qi

)
. (2.2)

Comparing eq. (2.1) and eq. (2.2), and noting that they hold for any δq, we
can in particular take all but one of the δqi to be zero to pick out the ith
component, giving the generalized force as

Qi =
N∑

k=1

Fk·
∂xk

∂qi
. (2.3)

When there are holonomic constraints on the system we decompose the
forces acting on the particles into what we shall call explicit forces and forces
of constraint . (The latter terminology is standard, but the usage “explicit
forces” seems new—often they are called “applied forces”, but this is confus-
ing because they need not originate externally to the system, but also from
interactions between the particles.)

By forces of constraint, Fcst
k , we mean those imposed on the particles

by the rigid rods, joints, sliding planes etc. that make up the holonomic
constraints on the system. These forces simply adjust themselves to whatever
values are required to maintain the geometric constraint equations and can
be regarded as “private” forces that, for most purposes, we do not need to
know1. Furthermore, we may not be able to tell what these forces need to
be until we have solved the equations of motion, so they cannot be assumed
known a priori.

The explicit force on each particle, Fxpl
k , is the vector sum of any externally

imposed forces, such as those due to an external gravitational or electric field,
plus any interaction forces between particles such as those due to elastic

1Of course, in practical engineering design contexts one should at some stage check that
the constraint mechanism is capable of supplying the required force without deforming or
breaking!



2.2. GENERALIZED NEWTON’S 2ND LAW 19

springs coupling point masses, or to electrostatic attractions between charged
particles. If there is friction acting on the particle, including that due to
constraint mechanisms, then that must be included in Fxpl

k as well. These
are the “public” forces that determine the dynamical evolution of the degrees
of freedom of the system and are determined by the configuration q of the
system at each instant of time, and perhaps by the generalized velocity q̇ in
the case of velocity-dependent forces such as those due to friction and those
acting on a charged particle moving in a magnetic field.

Figure 2.1 shows a simple system with
N

mg

F

α

Figure 2.1: A body on
an inclined plane as de-
scribed in the text.

a holonomic constraint—a particle slid-
ing on a plane inclined at angle α. It is
subject to the force of gravity, mg, the
normal force N, and a friction force F in
the directions shown. The force of con-
straint is N. It does no work because it
is orthogonal to the direction of motion,
and its magnitude is that required to null
out the normal component of the gravita-
tional force, |N| = mg cosα, so as to give
no acceleration in the normal direction and thus maintain the constraint.

We now make the crucial observation that, because the constraints are
assumed to be provided by rigid, undeformable mechanisms, no work can
be done on the interior constraint subsystem by the virtual displacements.
That is, no (net) virtual work is done against the nonfriction forces imposed
by the particles on the constraint mechanisms in performing the variations
δq. By Newton’s Third Law, the nonfriction forces acting on the constraint
mechanisms are equal and opposite to the forces of constraint, Fcst

k . Thus
the sum over Fcst

k ·δxk vanishes and we can replace the total force Fk with
Fxpl

k in eqs. (2.2) and (2.3). Note: If there are friction forces associated
with the constraints there is work done against these, but this fact does not
negate the above argument because we have included the friction forces in
the explicit forces—any work done against friction forces goes into heat which
is dissipated into the external world, not into mechanical energy within the
constraint subsystem.

That is,

Qi =
N∑

k=1

Fxpl
k ·∂xk

∂qi
. (2.4)

For the purpose of calculating the generalized forces, this is a much more
practical expression than eq. (2.3) because the Fxpl

k are known in terms of
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the instantaneous positions and velocities. Thus Qi = Qi(q, q̇, t).

2.2.2 Generalized equation of motion

We now suppose that eq. (2.4) has been used to determine the Q as functions
of the q (and possible q̇ and t if we have velocity-dependent forces and time-
dependent constraints, respectively). Then we rewrite eq. (2.3) in the form

N∑
k=1

Fk·
∂xk

∂qi
= Qi(q, q̇, t) . (2.5)

To derive an equation of motion we use Newton’s second law to replace
Fk on the left-hand side of eq. (2.5) with mkr̈k,

N∑
k=1

mkr̈k·
∂xk

∂qi

≡
N∑

k=1

mk

[
d

dt

(
ṙk·

∂xk

∂qi

)
− ṙk·

d

dt

∂xk

∂qi

]
= Qi . (2.6)

We now differentiate rk = xk(q(t), t) with respect to t to find the function
vk such that ṙk = vk(q, q̇, t):

ṙk =
∂xk

∂t
+

n∑
j=1

q̇j
∂xk

∂qj
≡ vk(q, q̇, t) . (2.7)

Differentiating vk wrt q̇i (treating q and q̇ as independent variables in partial
derivatives) we immediately have the lemma

∂xk

∂qi
=
∂vk

∂q̇i
. (2.8)

The second lemma about partial derivatives of vk that will be needed is

d

dt

∂xk

∂qi
=
∂vk

∂qi
, (2.9)

which follows because d/ dt can be replaced by ∂/∂t + q̇·∂/∂q, which com-
mutes with ∂/∂qi (cf. the “interchange of delta and dot” lemma in Sec. 1.4).

Applying these two lemmas in eq. (2.6) we find

N∑
k=1

[
d

dt

(
mkvk·

∂vk

∂q̇i

)
−mkvk·

∂vk

∂qi

]

=
N∑

k=1

[
d

dt

∂

∂q̇i

(
1
2mkv

2
k

)
− ∂

∂qi

(
1
2mkv

2
k

)]
= Qi , (2.10)
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In terms of the total kinetic energy of the system, T

T ≡
N∑

k=1

1
2mkv

2
k , (2.11)

we write eq. (2.10) compactly as the generalized Newton’s second law

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi . (2.12)

These n equations are sometimes called Lagrange’s equations of motion, but
we shall reserve this term for a later form [eq. (2.24)] arising when we assume
a special (though very general) form for the Qi. They are also sometimes
called (e.g. Scheck p. 83) d’Alembert’s equations, but this may be historically
inaccurate so is best avoided.

2.2.3 Example: Motion in Cartesian coordinates

Let us check that we can recover Newton’s equations of motion as a special
case when q = {x, y, z}. In this case

T = 1
2m(ẋ2 + ẏ2 + ż2) (2.13)

so
∂T

∂x
=
∂T

∂y
=
∂T

∂z
= 0 (2.14)

and
∂T

∂ẋ
= mẋ ,

∂T

∂ẏ
= mẏ ,

∂T

∂ż
= mż . (2.15)

Also, from eq. (2.4) we see that Qi ≡ Fi. Substituting in eq. (2.12) we
immediately recover Newton’s 2nd Law in Cartesian form

mẍ = Fx mÿ = Fy mz̈ = Fy (2.16)

as expected.

2.3 Lagrange’s equations (scalar potential case)

In many problems in physics the forces Fk are derivable from a potential ,
V (r1, r2, · · · , rN). For instance, in the classical N -body problem the parti-
cles are assumed to interact pairwise via a two-body interaction potential
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Vk,l(rk, rl) ≡ Uk,l(|rk − rl|) such that the force on particle k due to particle l
is given by

Fk,l = −∇kVk,l

= −(rk − rl)

|rk − rl|
U ′

k,l(rk,l) , (2.17)

where the prime on U denotes the derivative with respect to its argument,
the interparticle distance rk,l ≡ |rk − rl|. Then the total force on particle k
is found by summing the forces on it due to all the other particles

Fk = −
∑
l 6=k

∇kVk,l

= −∇kV , (2.18)

where the N -body potential V is the sum of all distinct two-body interactions

V ≡
N∑

k=1

∑
l≤k

Vk,l

= 1
2

N∑
k,l=1

′ Vk,l . (2.19)

In the first line we counted the interactions once and only once: noting
that Vk,l = Vl,k, so that the matrix of interactions is symmetric we have
kept only those entries below the diagonal to avoid double counting. In the
second, more symmetric, form we have summed all the off-diagonal entries
of the matrix but have compensated for the double counting by dividing by
2. The exclusion of the diagonal “self-interaction” potentials is indicated by
putting a prime on the

∑
.

Physical examples of such an N -body system with binary interactions
are:

• An unmagnetized plasma, where Vk,l is the Coulomb interaction

Uk,l(r) =
ekel

ε0r
, (2.20)

where the ek are the charges on the particles and ε0 is the permittivity
of free space. We could also allow for the effect of gravity by adding
the potential

∑
k mkgzk to V , where zk is the height of the kth particle

with respect to a horizontal reference plane and mk is its mass.
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• A globular cluster of stars, where Vk,l is the gravitational interaction

Uk,l(r) =
Gmkml

r
, (2.21)

where G is the gravitational constant.

• A dilute monatomic gas, where Vk,l is the Van der Waal’s interaction.
However, if the gas is too dense (or becomes a liquid) we would have
to include 3-body or higher interactions as the wave functions of more
than two atoms could overlap simultaneously.

Even when the system is subjected to external forces, such as gravity,
and/or holonomic constraints, we can often still assume that the “explicit
forces” are derivable from a potential

Fxpl
k = −∇kV . (2.22)

Taking into account the constraints, we see that the potential V (r1, r2, · · · , rN)
becomes a function, V (q, t), in the reduced configuration space. Then, from
eq. (2.4) we have

Qi = −
N∑

k=1

∂xk

∂qi
·∇kV

= − ∂

∂qi
V (q, t) . (2.23)

Substituting this form for Qi in eq. (2.12) we see that the generalized
Newton’s equations of motion can be encapsulated in the very compact form
(Lagrange’s equations of motion)

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , (2.24)

where the function L(q, q̇, t), called the Lagrangian, is defined as

L ≡ T − V . (2.25)

2.3.1 Hamilton’s Principle

Comparing eq. (2.24) with eq. (1.17) we see that Lagrange’s equations of
motion have exactly the same form as the Euler–Lagrange equations for the
variational principle δS = 0, where the functional S[q], defined by

S ≡
∫ t2

t1

dt L(q̇, q, t) , (2.26)
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is known as the action integral . Since the natural boundary conditions
eq. (1.18) are not physical, the variational principle is one in which the end-
points are to be kept fixed.

We can now state Hamilton’s Principle: Physical paths in configuration
space are those for which the action integral is stationary against all infinites-
imal variations that keep the endpoints fixed.

By physical paths we mean those paths, out of all those that are consistent
with the constraints, that actually obey the equations of motion with the
given Lagrangian.

To go beyond the original Newtonian dynamics with a scalar potential
that we used to motivate Lagrange’s equations, we can instead take Hamil-
ton’s Principle, being such a simple and geometrically appealing result, as a
more fundamental and natural starting point for Lagrangian dynamics.

2.4 Lagrangians for some Physical Systems

2.4.1 Example 1: 1-D motion—the pendulum

One of the simplest nonlinear systems is

( 1 −c o s θ ) l

0
mg

z

θ l

Figure 2.2: Phys-
ical pendulum.

the one-dimensional physical pendulum (so called
to distinguish it from the linearized harmonic
oscillator approximation). As depicted in Fig. 2.2,
the pendulum consists of a light rigid rod of
length l, making an angle θ with the vertical,
swinging from a fixed pivot at one end and
with a bob of mass m attached at the other.

The constraint l = const and the assump-
tion of plane motion reduces the system to one
degree of freedom, described by the general-
ized coordinate θ. (This system is also called
the simple pendulum to distinguish it from the
spherical pendulum and compound pendula,
which have more than one degree of freedom.)
The potential energy with respect to the equi-

librium position θ = 0 is V (θ) = mgl(1− cos θ), where g is the acceleration
due to gravity, and the velocity of the bob is vθ = lθ̇, so that the kinetic
energy T = 1

2mv
2
θ = 1

2ml
2θ̇2. The Lagrangian, T − V , is thus

L(θ, θ̇) = 1
2ml

2θ̇2 −mgl(1− cos θ) . (2.27)
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This is also essentially the Lagrangian for a particle moving in a sinusoidal
spatial potential, so the physical pendulum provides a paradigm for problems
such as the motion of an electron in a crystal lattice or of an ion or electron
in a plasma wave.

From eq. (2.27) ∂L/∂θ̇ = ml2θ̇ and ∂L/∂θ = −mgl sin θ. Thus, the
Lagrangian equation of motion is

ml2θ̈ = −mgl sin θ . (2.28)

Expanding the cosine up to quadratic order in θ gives the harmonic os-
cillator oscillator approximation (see also Sec. 2.6.2)

L ≈ Llin ≡ 1
2ml

2θ̇2 − 1
2mglθ

2 , (2.29)

for which the equation of motion is, dividing through by ml2, θ̈ + ω2
0θ = 0,

with ω0 ≡
√
g/l.

2.4.2 Example 2: 2-D motion in a central potential

Let us work in plane polar coordinates, q = {r, θ}, such that

x = r cos θ , y = r sin θ , (2.30)

so that

ẋ = ṙ cos θ − rθ̇ sin θ ,

ẏ = ṙ sin θ + rθ̇ cos θ , (2.31)

whence the kinetic energy T ≡ 1
2(ẋ

2 + ẏ2) is found to be

T = 1
2m
(
ṙ2 + r2θ̇2

)
. (2.32)

An alternative derivation of eq. (2.32) may be found by resolving v into the
components ṙer and rθ̇eθ, where er is the unit vector in the radial direction
and eθ is the unit vector in the azimuthal direction.

We now consider the restricted two body problem—one light particle
orbiting about a massive particle which may be taken to be fixed at r = 0
(e.g. an electron orbiting about a proton in the Bohr model of the hydrogen
atom, or a planet orbiting about the sun). Then the potential V = V (r)
(given by eq. (2.20) or eq. (2.21)) is a function only of the radial distance
from the central body and not of the angle.
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Then, from eq. (2.25) the Lagrangian is

L = 1
2m
(
ṙ2 + r2θ̇2

)
− V (r) . (2.33)

First we observe that L is independent of θ (in which case θ is said to be
ignorable). Then ∂L/∂θ ≡ 0 and the θ component of Lagrange’s equations,
eq. (2.24) becomes

d

dt

∂L

∂θ̇
= 0 , (2.34)

which we may immediately integrate once to get an integral of the motion,
i.e. a dynamical quantity that is constant along the trajectory

∂L

∂θ̇
= const . (2.35)

From eq. (2.33) we see that ∂L/∂θ̇ = mr2θ̇, which is the angular momentum.
Thus eq. (2.33) expresses conservation of angular momentum.

Turning now to the r-component

u

θ
r

Figure 2.3: Planar mo-
tion with a time-varying cen-
tripetal constraint as de-
scribed in the text.

of Lagrange’s equations, we see from
eq. (2.33)

∂L

∂r
= mrθ̇2 − V ′(r) ,

∂L

∂ṙ
= mṙ ,

d

dt

∂L

∂ṙ
= mr̈ .(2.36)

From eq. (2.24) we find the radial
equation of motion to be

mr̈ −mrθ̇2 = −V ′(r) . (2.37)

2.4.3 Example 3: 2-D motion with time-varying con-
straint

Instead of free motion in a central potential, consider instead a weight ro-
tating about the origin on a frictionless horizontal surface (see Fig. 2.3) and
constrained by a thread, initially of length a, that is being pulled steadily
downward at speed u through a hole at the origin so that the radius r = a−ut.

Then the Lagrangian is, substituting for r in eq. (2.32),

L = T = 1
2m
[
u2 + (a− ut)2θ̇2

]
. (2.38)
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Now only θ is an unconstrained generalized coordinate. As before, it is
ignorable, and so we again have conservation of angular momentum

m(a− ut)2θ̇ ≡ l = const , (2.39)

which equation can be integrated to give θ as a function of t, θ = θ0 +
(l/mu)[1/(a− ut)− 1/a] = θ0 + lt/[ma(a− ut)].

Clearly angular momentum is conserved, because the purely radial string
cannot exert any torque on the weight. Thus Lagrange’s equation of motion
gives the correct answer. However, the string is obviously doing work on the
system because T = 1

2 [mu
2 + (l2/m)/(a − ut)2] is not conserved. Have we

not therefore violated the postulate in Sec. 2.2.2 of no work being done by
the constraints? The answer is “no” because what we assumed in Sec. 2.2.2
was that no virtual work was done by the constraints. The fact that the
constraint is time-dependent is irrelevant to this postulate, because virtual
displacements are done instantaneously at any given time.

2.4.4 Example 4: Atwood’s machine

Consider two weights of mass m1 and m2

−x

x
0m

1

m
2

Figure 2.4: At-
wood’s machine.

suspended from a frictionless, inertialess pully
of radius a by a rope of fixed length, as de-
picted in Fig. 2.4. The height of weight 1 is x
with respect to the chosen origin and the holo-
nomic constraint provided by the rope allows
us to express the height of weight 2 as −x, so
that there is only one degree of freedom for
this system.

The kinetic and potential energy are T =
1
2(m1 + m2)ẋ

2 and V = m1gx − m2gx. Thus
L = T − V is given by

L = 1
2(m1 +m2)ẋ

2 − (m1 −m2)gx (2.40)

and its derivatives are ∂L/∂x = −(m1 −m2)g
and ∂L/∂ẋ = (m1+m2)ẋ, so that the equation of motion d(∂L/∂ẋ) = ∂L/∂x
becomes

ẍ = −m1 −m2

m1 +m2

g . (2.41)
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2.4.5 Example 5: Particle in e.m. field

The fact that Lagrange’s equations are the Euler–Lagrange equations for the
extraordinarily simple and general Hamilton’s Principle (see Sec. 2.3.1) sug-
gests that Lagrange’s equations of motion may have a wider range of validity
than simply problems where the force is derivable from a scalar potential.
Thus we do not define L as T −V , but rather postulate the universal validity
of Lagrange’s equations of motion (or, equivalently, Hamilton’s Principle), for
describing non-dissipative classical dynamics and accept any Lagrangian as
valid that gives the physical equation of motion.

In particular, it is obviously of great physical importance to find a La-
grangian for which Lagrange’s equations of motion eq. (2.24) reproduce the
equation of motion of a charged particle in an electromagnetic field, under
the influence of the Lorentz force,

mr̈ = eE(r, t) + eṙ×B(r, t) , (2.42)

where e is the charge on the particle of mass m.

We assume the electric and magnetic fields E and B, respectively, to
be given in terms of the scalar potential Φ and vector potential A by the
standard relations

E = −∇Φ− ∂tA ,

B = ∇×A . (2.43)

The electrostatic potential energy is eΦ, so we expect part of the La-
grangian to be 1

2mṙ2 − eΦ, but how do we include the vector potential?
Clearly we need to form a scalar since L is a scalar, so we need to dot A
with one of the naturally occurring vectors in the problem to create a scalar.
The three vectors available are A itself, r and ṙ. However we do not wish to
use A, since A·A in the Lagrangian would give an equation of motion that
is nonlinear in the electromagnetic field, contrary to eq. (2.42). Thus we can
only use r and ṙ. Comparing eqs. (2.42) and (2.43) we see that ṙ·A has the
same dimensions as Φ, so let us try adding that to form the total Lagrangian

L = 1
2mṙ2 − eΦ + eṙ·A . (2.44)

Taking q ≡ {q1, q2, q3} = {x, y, z} we have

∂L

∂qi
= −e∂Φ

∂qi
+ e

3∑
j=1

q̇j
∂Aj

∂qi
, (2.45)
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and

d

dt

∂L

∂q̇i
= mq̈i + e

dAi

dt
= mq̈i + e

[
∂Ai

∂t
+

3∑
j=1

q̇j
∂Ai

∂qj

]
. (2.46)

Substituting eqs. (2.45) and (2.46) in eq. (2.24) we find

mq̈i = e

[
−∂Φ

∂qi
− ∂Ai

∂t

]
+ e

3∑
j=1

q̇j

[
∂Aj

∂qi
− ∂Ai

∂qj

]
. (2.47)

This is simply eq. (2.42) in Cartesian component form, so our guessed La-
grangian is indeed correct.

2.4.6 Example 6: Particle in ideal fluid

In Sec. 1.3 we presented a fluid as a system with an infinite number of degrees
of freedom. However, if we concentrate only on the motion of a single fluid
element (a test particle), taking the pressure p and mass density ρ as known,
prescribed functions of r and t the problem becomes only three-dimensional.

Dividing by ρ we write the equation of motion of a fluid element as

dv

dt
= −∇p

ρ
−∇V , (2.48)

where V (r, t) is the potential energy (usually gravitational) per unit mass.
To find a Lagrangian for this motion we need to be able to combine

the pressure gradient and density into an effective potential. In an ideal
compressible fluid we have the equation of state p( dV )γ = p0( dV0)

γ, where
γ is the ratio of specific heats, which we can write as

p

ργ
= const , (2.49)

where the right-hand side is a constant of the motion for the given test
particle. If we further assume that it is the same constant for all fluid
elements in the neighbourhood of the test particle, then we can take the
gradient of the log of eq. (2.49) to get (∇p)/p = γ(∇ρ)/ρ. Thus

∇p

ρ
= ∇

(
p

ρ

)
− p

ρ2
∇ρ

= ∇
(
p

ρ

)
− ∇p

γρ
.
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Solving for ∇p/ρ we get
∇p

ρ
= ∇h (2.50)

where the enthalpy (per unit mass) is defined by

h ≡ γ

γ − 1

p

ρ
. (2.51)

Using eq. (2.50) in eq. (2.48) we recognize it as the equation of motion
for a particle of unit mass with total potential energy h + V . Thus the
Lagrangian is

L = 1
2 ṙ

2 − h− V . (2.52)

2.5 Averaged Lagrangian

From Sec. 2.3.1 we know that Lagrangian dynamics has a variational for-
mulation, and so we expect that trial function methods (see Sec. 1.4.2) may
be useful as a way of generating approximate solutions of the Lagrangian
equations of motion. In particular, suppose we know that the solutions are
oscillatory functions of t with a frequency much higher than the inverse of
any characteristic time for slow changes in the parameters of the system (the
changes being then said to occur adiabatically). Then we may use a trial
function of the form

q(t) = q̃(φ(t), A1(t), A2(t), . . .) (2.53)

where q̃ is a 2π-periodic function of φ, the phase of the rapid oscillations, and
the Ak are a set of slowly varying amplitudes characterizing the waveform
(e.g. see Problem 2.8.2). Thus,

q̇ = ω(t)
∂q̃

∂φ
+ Ȧ1

∂q̃

∂A1

+ Ȧ2
∂q̃

∂A2

+ · · · , (2.54)

where the instantaneous frequency is defined by

ω(t) ≡ φ̇(t) . (2.55)

Since ω � d lnAk/ dt, to a first approximation we may keep only the first
term in eq. (2.54). Thus our approximate L is a function of ω, but not of
Ȧ1, Ȧ2 etc.

Now take the time integration in the action integral to be over a time
long compared with the period of oscillation, but short compared with the
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timescale for changes in the system parameters. Thus only the phase-average
of L,

L̄ ≡
∫ 2π

0

dφ

2π
L (2.56)

contributes to the action,

S ≈
∫ t2

t1

dt L̄(ω,A1(t), A2(t), . . .) (2.57)

for the class of oscillatory physical solutions we seek. Note that the averaging
in eq. (2.56) removes all direct dependence on φ, so L̄ depends only on its
time derivative ω.

Thus, we have a new, approximate form of Hamilton’s Principle in which
the averaged Lagrangian replaces the exact Lagrangian, and in which the
set {φ,A1, A2, . . .} replaces the set q1, q2, . . . as the generalized variables.
Requiring S to be stationary within the class of quasiperiodic trial functions
then gives the new adiabatic Euler–Lagrange equations

d

dt

∂L̄

∂φ̇
= 0 , (2.58)

and
∂L̄

∂Ak

= 0 , k = 1, 2, . . . . (2.59)

The first equation expresses the conservation of the adiabatic invariant ,
J = const, where J is known as the oscillator action

J ≡ ∂L̄

∂ω
. (2.60)

The second set of equations gives relations between ω and the Aks that give
the waveform and the instantaneous frequency.

2.5.1 Example: Harmonic oscillator

Consider a weight of mass m at the end of a light spring with spring constant
k = mω2

0. Then the kinetic energy is T = 1
2mẋ

2 and the potential energy is
V = 1

2kx
2 = 1

2mω
2
0x

2. Thus the natural form of the Lagrangian, T − V , is

L = 1
2m(ẋ2 − ω2

0x
2) . (2.61)

Now consider that the length of the spring, or perhaps the spring constant,
changes slowly with time, so that ω0 = ω0(t), with d lnω0/ dt� ω0. Because
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the system is changing with time, the amplitude of oscillation is not constant.
We now use the average Lagrangian method to find the adiabatic invariant,
which allows us to predict how the amplitude changes with time. (For an
alternative derivation of adiabatic invariance in this case, see Sec. 4.2.1.)

Since the problem is linear, we use a sinusoidal trial function with no
harmonics

x = A sinφ(t) . (2.62)

In response to the slow changes in ω0 we expect A and ω ≡ φ̇ also to be
slowly varying functions of time. Calculating the averaged Lagrangian as in
eq. (2.56) we have

L̄ =
mA2

4

(
ω2 − ω2

0

)
. (2.63)

The Euler–Lagrange equation eq. (2.59) from varying A gives

∂L̄

∂A
=
mA

2

(
ω2 − ω2

0

)
= 0 . (2.64)

Since we assume that the amplitude is not zero, this implies that the insta-
neous frequency tracks the changing natural frequency, ω = ±ω0(t) (which
also implies that L̄ = 0).

The adiabatically conserved action J , eq. (2.60), is

J =
mωA2

2
. (2.65)

From the adiabatic invariance of J we see that A varies as the inverse of ω
1/2
0 .

Remark 2.1 Our derivation of adiabatic invariance has been carried out
only to first order in ε, the small parameter expressing the ratio between the
short oscillatory timescale and the long slow timescale. However, it can be
shown that an averaged Lagrangian asymptotically independent of φ to all
orders in a power series in ε can be found. Thus an adiabatic invariant
can be defined to arbitrary order in ε. (This does not however mean that
adiabatic invariance is exact, since asymptotically small changes, e.g. going
as exp(−1/|ε|), are not ruled out.)

2.6 Transformations of the Lagrangian

2.6.1 Point transformations

Given an arbitrary Lagrangian L(q, q̇, t) in one generalized coordinate sys-
tem, q ≡ {qi|i = 1, n} (e.g. a Cartesian frame), we often want to know
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the Lagrangian L′(Q, Q̇, t) in another generalized coordinate system, Q ≡
{Qi|i = 1, n} (e.g. polar coordinates as in the examples in Sec. 2.4.2 and
Sec. 2.4.3). Thus, suppose there exists a set g ≡ {gi|i = 1, n} of twice-
differentiable functions gi such that

qi = gi(Q, t) , i = 1, . . . , n . (2.66)

We require the inverse function of g also to be twice differentiable, in which
case g : Q 7→ q is said to be a C2 diffeomorphism. Note that we have
allowed the transformation to be time dependent, so transformations to a
moving frame are allowed.

The transformation g maps a path in Q-space to a path in q-space.
However, it is physically the same path—all we have changed is its represen-
tation. What we need in order to discuss how the Lagrangian transforms is a
coordinate-free formulation of Lagrangian dynamics. This is another virtue
of Hamilton’s Principle— δS = 0 on a physical path for all variations with
fixed endpoints—since the action integral S given by eq. (2.26) is an integral
over time only. Thus, if we can define L′ so that

L′(Q(t), Q̇(t), t) = L(q(t), q̇(t), t) (2.67)

for any path, then S is automatically invariant under the coordinate change
and will be stationary for the same physical paths, irrespective of what co-
ordinates they are represented in.

We can guarantee this trivially, simply by choosing the new Lagrangian
to be the old one in the new coordinates:

L′(Q, Q̇, t) = L(g(Q, t), ġ(Q, Q̇, t), t) , (2.68)

where

ġi ≡
∂gi

∂t
+

n∑
j=1

Q̇j
∂gi

∂Qj

, i = 1, . . . , n . (2.69)

One can prove that eq. (2.68) gives the correct dynamics by calculat-
ing the transformation of the Euler–Lagrange equations explicitly (see e.g.
Scheck, 1990) and showing that eq. (2.24) implies

d

dt

(
∂L′

∂Q̇i

)
− ∂L′

∂Qi

= 0 , (2.70)

but clearly Hamilton’s Principle provides a much simpler and more elegant
way of arriving at the same result, since eqs. 2.70 are simply the Euler–
Lagrange equations for S to be stationary in the new variables.

We have in fact already run into a special case of this transformation rule,
in Sec. 2.4.2 and Sec. 2.4.3, where we transformed the kinetic and potential
energies from Cartesians to polars in the obvious way.
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2.6.2 Gauge transformations

We saw in Sec. 2.4.5 that we cannot always expect that the Lagrangian is
of the form T − V , but nevertheless found a function for which Lagrange’s
equations gave the correct dynamical equations of motion. Thus it is the
requirement that the equations of motion be in the form of Lagrange’s equa-
tions (or, equivalently, that Hamilton’s Principle apply) that is fundamental,
rather than the specific form of L.

That naturally raises the question: for a given system is there only one
Lagrangian giving the correct equations of motion, or are there many?

Clearly there is a trivial way to generate multiple physically equivalent
Lagrangians, and that is to multiply L by a constant factor. However, we
usually normalize L in a natural way, e.g. by requiring that the part linear
in the mass be equal to the kinetic energy, so this freedom is not encountered
much in practice.

However, there is a more important source of nonuniqueness, known as a
gauge transformation of the Lagrangian in which L is replaced by L′, defined
by

L′(q, q̇, t) = L(q, q̇, t) +
∂M

∂t
+ q̇·∂M

∂q
(2.71)

[using the shorthand notation defined in eq. (1.4)], where M(q, t) is any C3

function. We recognize the term in M as the total time derivative, Ṁ , and
thus, from eq. (2.26) and eq. (2.71), the new action integral becomes

S ′ ≡
∫ t2

t1

dt L′(q̇, q, t)

=

∫ t2

t1

dt

[
L(q̇, q, t) +

d

dt
M(q, t)

]
= S +M(q(t2), t2)−M(q(t1), t1) . (2.72)

However, since the endpoints are held fixed in Hamilton’s Principle, the
endpoint terms M(q(t1,2), t1,2) do not affect the allowed variations of S (i.e.
δS ′ ≡ δS for all admissible variations) and therefore S ′ is stationary if and
only if S is. Thus both Lagrangians give identical physical paths and L and
L′ are completely equivalent dynamically.

Example 1: Harmonic oscillator

Consider the harmonic oscillator Lagrangian, eq. (2.61), for a particle of unit
mass

L = 1
2(ẋ

2 − ω2
0x

2) , (2.73)
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where we take ω0 to be constant. Since ∂L/∂ẋ = ẋ and ∂L/∂x = ω2
0x, we

immediately verify that Lagrange’s equation, eq. (2.24), gives the harmonic
oscillator equation

ẍ = −ω2
0x . (2.74)

Now add a gauge term, taking M = 1
2ω0x

2. Then, from eq. (2.71), the
new Lagrangian becomes

L′ = 1
2(ẋ

2 + 2ω0xẋ− ω2
0x

2) . (2.75)

Calculating ∂L′/∂ẋ = ẋ+ω0x, and ∂L′/∂x = ω2
0x+ω0ẋ and substituting into

the Lagrangian equation of motion, we see that the gauge contributions can-
cel. Thus we do indeed recover the harmonic oscillator equation, eq. (2.74),
and the new Lagrangian is a perfectly valid one despite the fact that it is no
longer in the natural form, T − V .

Example 2: Electromagnetic gauge transformation

It is well known that the scalar and vector potentials in eqs. (2.43) are not
unique, since the electric and magnetic fields are left unchanged by the gauge
transformation

A(r, t) → A′(r, t) ≡ A(r, t) + ∇χ(r, t)

Φ(r, t) → Φ′(r, t) ≡ Φ(r, t)− ∂tχ(r, t) , (2.76)

where χ is an arbitrary scalar function (a gauge potential).
Using the gauge-transformed potentials Φ′ and A′ to define a new La-

grangian L′ in the same way as L was defined by eq. (2.44) we have

L′ = 1
2mṙ2 − eΦ′ + eṙ·A′ . (2.77)

Substituting eqs. (2.76) in eq. (2.77) we find

L′ = L+
∂(eχ)

∂t
+ ṙ·∇(eχ) , (2.78)

which is exactly of the form eq. (2.71) with M = eχ. Thus electromagnetic
and Lagrangian gauge transformations are closely related.

2.7 Symmetries and Noether’s theorem

A Lagrangian L is said to have a continuous symmetry if it is invariant under
the transformation q 7→ hs(q), where s is a real continuous parameter and
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hs=0 is the identity transformation. That is, given any path (not necessarily
physical) q(t), L has the same value on all members of the continuous family
of paths q(t, s) ≡ hs(q(t)). For example, in the case of motion in a central
potential, the continuous symmetry is invariance of L under rotations: θ 7→
θ + s.

Comparing two infinitesimally close paths we see that δL also possesses
this symmetry, so that if δS ≡

∫
δL dt = 0 on the path q(t) then it also van-

ishes for all members of the family q(t, s). Thus, from Hamilton’s Principle,
if q(t, 0) ≡ q(t) is a physical path, then so are all the paths q(t, s) generated
by the symmetry operation hs. Thus, given one solution of the equations
of motion we can use a symmetry to generate a continuous family of other
solutions.

We saw in Sec. 2.4.2 that a system with an ignorable coordinate always
has a conservation equation, giving rise to an integral of motion. This is a
special case of a general theorem proved by Emmy Noether in 19182 that
any time-independent continuous symmetry of the Lagrangian, L = L(q, q̇, t)
generates an integral of motion. This ability of the Lagrangian formalism to
generate conservation relations is one of its most important features.

Consider a family q(t, s) obeying the Lagrange equation of motion eq. (2.24),
which we write in the form

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
, (2.79)

where d/ dt denotes the total derivative along the path s = const.
Since L is constant over this family of paths, its derivative with respect

to s at each point in time vanishes

∂L

∂s
=
∂L

∂q
·∂q
∂s

+
∂L

∂q̇
·∂q̇
∂s

. (2.80)

Using eq. (2.79) to eliminate ∂L/∂q in eq. (2.80) and using the time-
independence of h to allow interchange of the order of differention with re-
spect to s and t we derive the conservation equation

d

dt

(
∂L

∂q̇

)
·∂q
∂s

+
∂L

∂q̇
· d

dt

(
∂q

∂s

)
≡ dI

dt
= 0 , (2.81)

where

I(q, q̇, t) ≡ ∂L

∂q̇
·∂q
∂s

(2.82)

is the integral of motion I generated by the symmetry h. 2

2English translation in Transport Theory and Statistical Physics, 1, 186 (1971).
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For example, expressing L in polar coordinates we see that the inte-
gral of motion generated by rotational symmetry is the angular momentum,
eq. (2.35), but eq. (2.82) applies in any coordinate system. (Similarly, in-
variance under translations in the x-direction generates the conservation of
linear momentum in the x-direction, and so on.)

2.7.1 Time symmetry

For an autonomous system (i.e. one not subject to external forcing), L is
independent of time. That is, L possesses the symmetry of invariance with
respect to translations in t. At first sight this seems very different from the
spatial symmetries just discussed, but in fact it is possible to generate an
integral of motion (the energy integral), using the trick of regarding t as a
generalized coordinate by making it a function of a new “time” parameter τ :
t = t(τ), q = q(τ). (E.g. τ could be the “proper time” in relativity theory.)

In order for the new action integral
∫
L̄ dτ to be the same as the old one,

the new Lagrangian L̄ is defined to be

L̄

(
q,

dq

dτ
,

dt

dτ

)
≡ L

(
q,

1

dt/ dτ

dq

dτ

)
dt

dτ
. (2.83)

Then, using invariance under t 7→ t + s, q 7→ q, eq. (2.82) gives the
integral of motion

I = L− q̇·∂L
∂q̇

, (2.84)

where we have set t = τ after doing the partial differentiations, as this applies
on a physical path. For Lagrangians of the form T − V is easily seen that
I = −T − V , so I can be identified as the negative of the total energy (cf.
Sec. 3.3).

2.8 Problems

2.8.1 Coriolis force and cyclotron motion

As a model of the motion of a fluid element or dust particle in a planetary
(e.g. Earth’s) atmosphere, consider the motion of particle of unit mass con-
strained to move on the surface of a perfectly smooth sphere of radius R
rotating with angular velocity Ω about the z-axis. Suppose the force on the
particle is given by an effective potential V (θ, φ) (see Sec. 2.4.6), where θ and
φ are the latitude and longitude respectively.
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(a) Write down the Lagrangian in a frame rotating with the planet, taking the
generalized coordinates to be the latitude and longitude so that z = R sin θ,
x = R cos θ cos(φ+Ωt), y = R cos θ sin(φ+Ωt), where x, y, z is a non-rotating
Cartesian frame. (Draw a diagram illustrating these coordinates, noting that
the origin of the θ coordinate is at the equator, not at the pole as in normal
spherical polar coordinates.)

Write down the equations of motion, and find a first integral (i.e. con-
stant of the motion) in the case where V is independent of longitude. Among
this class of potentials find the special case V = V0(θ) required to make equi-
librium possible (i.e. so that the equations of motion admit the solution
θ̇ = φ̇ = 0 at each latitude).

Now assume that the general form of the potential is V (θ, φ) = V0(θ) +
h(θ, φ), where h is the enthalpy (proportional to p(γ−1)/γ) defined in Sec. 2.4.6.
Assuming the winds are slow, so that second order time derivatives of θ and φ
(and products of first order time derivatives) can be neglected, show that the
velocity of the particle in the rotating frame is at right angles to the pressure
gradient −∇p. (Hint: The pressure gradient is parallel to the enthalpy
gradient. You don’t have to work out the velocity and gradient vectors in
the rotating angular coordinates. It is much simpler to work with the scalar
quantity w·∇p, where w is the “wind velocity”, i.e. the particle velocity
with respect to the rotating frame.)

Draw a sketch of a typical weather-map “low” (i.e. a localized depression
in p) showing the pressure contours, the direction of the force on a fluid ele-
ment and the direction of motion. Hence show that motion in a depression
or low is cyclonic, where “cyclonic” in geophysical fluid dynamics means “in
the direction of the planet’s rotation” (i.e. clockwise in the Southern Hemi-
sphere, counter-clockwise in the Northern Hemisphere for Ω > 0).

(c) Consider a charged particle constrained to move on a non-rotating smooth
insulating sphere, immersed in a uniform magnetic field B = Bez, on which
the electrostatic potential is a function of latitude and longitude. Write down
the Lagrangian in the same generalized coordinates as above and show it is
the same as that for the particle on the rotating planet with appropriate
identifications of Ω and V .

2.8.2 Anharmonic oscillator

Consider the following potential V , corresponding to a particle of mass m
oscillating along the x-axis under the influence of a nonideal spring (i.e. one
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with a nonlinear restoring force),

V (x) =
mω2

0

2

(
x2 + σ

x4

l20

)
,

where the constant ω0 is the angular frequency of oscillations having ampli-
tude small compared with the characteristic length l0, and σ = ±1 depends
on whether the spring is “soft” (σ = −1) or “hard” (σ = +1).

Consider the trial function

x = l0 [A cosωt+B cos 3ωt+ C sin 3ωt] ,

where A, B, C are the nondimensionalized amplitudes of the fundamental
and third harmonic, respectively, and ω is the nonlinearly shifted frequency.
By using this trial function in the time-averaged Hamilton’s Principle, find
implicit relations giving approximate expressions for ω, B and C as functions
of A. Show that C ≡ 0. The trial function is strictly appropriate only to the
case A � 1, but plot ω/ω0 and B vs. A from 0 to 1 in the case of both a
hard and a soft spring. (You are encouraged to use Maple or Mathematica
and/or MatLab in this problem.)
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Chapter 3

Hamiltonian Mechanics

3.1 Introduction: Dynamical systems

Mathematically, a continuous-time dynamical system is defined to be a sys-
tem of first order differential equations

ż = f(z, t) , t ∈ R , (3.1)

where f is known as the vector field and R is the set of real numbers. The
space in which the set of time-dependent variables z is defined is called phase
space.

Sometimes we also talk about a discrete-time dynamical system. This is
a recursion relation, difference equation or iterated map

zt+1 = f(z, t) , t ∈ Z , (3.2)

where f is known as the map (or mapping) and Z is the set of all integers
{. . . ,−2,−1, 0, 1, 2, . . .}.

Typically, such systems exhibit long-time phenomena like attracting and
repelling fixed points and limit cycles, or more complex structures such as
strange attractors. In this chapter we show how to reformulate nondissipative
Lagrangian mechanics as a dynamical system, but shall find that it is a very
special case where the above-mentioned phenomena cannot occur.

3.2 Mechanics as a dynamical system

3.2.1 Lagrangian method

Lagrange’s equations do not form a dynamical system, because they implic-
itly contain second-order derivatives, q̈. However, there is a standard way to

41
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obtain a system of first-order equations from a second-order system, which
is to double the size of the space of time-dependent variables by treating
the generalized velocities u as independent of the generalized coordinates, so
that the dynamical system is q̇ = u, u̇ = q̈(q,u, t). Then the phase space
is of dimension 2n. This trick is used very frequently in numerical problems,
because the standard numerical integrators require the problem to be posed
in terms of systems of first-order differential equations.

In the particular case of Lagrangian mechanics, we have from eq. (2.24),
expanding out the total derivative using the chain rule and moving all but
the highest-order time derivatives to the right-hand side,

n∑
j=1

∂2L

∂q̇i∂q̇j
q̈j =

∂L

∂qi
− ∂2L

∂q̇i∂t
−

n∑
j=1

∂2L

∂q̇i∂qj
q̇j . (3.3)

The matrix H acting on q̈, whose elements are given by

Hi,j ≡
∂2L

∂q̇i∂q̇j
, (3.4)

is called the Hessian matrix . It is a kind of generalized mass tensor (see
Sec. 3.2.6), and for our method to work we require it to be nonsingular, so
that its inverse, H−1, exists and we can find q̈. Then our dynamical system
becomes

q̇ = u ,

u̇ = H−1·
[
∂L

∂q
− ∂2L

∂q̇∂t
− ∂2L

∂q̇∂q
·q̇
]
. (3.5)

Remark 3.1 The Lagrangian method per se does not break down if the Hes-
sian is singular, only our attempt to force it into the standard dynamical
system framework. We can still formally solve the dynamics in the follow-
ing manner: Suppose H is singular, with rank n − m. Then, within the n-
dimensional linear vector space N on which H acts, there is an m-dimensional
subspace M (the nullspace) such that H·q̈ ≡ 0 for all q̈ ∈M. We can solve
eq. (3.3) for the component of q̈ lying in the complementary subspace N \M
provided the right-hand side satisfies the solubility condition that it have no
component in M. The component of q̈ lying in M cannot be found directly,
but the solubility condition provides m constraints that complete the deter-
mination of the dynamics.

As a simple example, suppose L does not depend on one of the generalized
velocities, q̇i. Then ∂L/∂q̇i ≡ 0 and the ith component of the Lagrange
equations of motion eq. (2.24) reduces to the constraint ∂L/∂qi = 0. 2
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3.2.2 Hamiltonian method

We can achieve our aim of finding 2n first-order differential equations by
using many choices of auxiliary variables other than u. These will be more
complicated functions of the generalized velocities, but the extra freedom of
choice may also bring advantages.

In particular, Hamilton realised that it is very natural to use as the new
auxiliary variables the set p = {pi|i = 1, . . . , n} defined by

pi ≡
∂

∂q̇i
L(q, q̇, t) , (3.6)

where pi is called the generalized momentum canonically conjugate to qi.

We shall always assume that eq. (3.6) can be solved to give q̇ as a function
of q and p

q̇ = u(q,p, t) . (3.7)

Remark 3.2 We have in effect changed variables from u to p, and such a
change of variables can only be performed if the Jacobian matrix ∂pi/∂uj =
∂2L/∂q̇i∂q̇j is nonsingular. From eq. (3.4) we recognize this matrix as being
the Hessian we encountered in the Lagrangian approach to constructing a
dynamical system. Thus in either approach we require the Hessian to be
nonsingular (i.e. for its determinant to be nonzero). This condition is usually
trivially satisfied, but there are physical problems (e.g. if the Lagrangian does
not depend on one of the generalized velocities) when this is not the case.
However, in the standard Hamiltonian theory covered in this course it is
always assumed to hold.

The reason for defining p as in eq. (3.6) is that ∂L/∂q̇ occurs explicitly
in Lagrange’s equations, eq. (2.24), so we immediately get an equation of
motion for p

ṗ =
∂L(q, q̇, t)

∂q

∣∣∣∣
q̇=u(q,p,t)

. (3.8)

Equations (3.7) and (3.8) do indeed form a dynamical system, but so far
it looks rather unsatisfactory: now u is defined only implicitly as a function
of the phase-space variables q and p, yet the right-hand side of eq. (3.8)
involves a partial derivative in which the q-dependence of u is ignored!

We can fix the latter problem by holding p fixed in partial derivatives
with respect to q (because it is an independent phase-space variable) but
then subtracting a correction term to cancel the contribution coming from
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the q-dependence of u. Applying the chain rule and then using eqs. (3.6)
and (3.7) we get

ṗ =
∂L(q,u, t)

∂q
−

n∑
i=1

∂L

∂ui

∂ui

∂q

=
∂L(q,u, t)

∂q
−

n∑
i=1

pi
∂ui

∂q

=
∂

∂q
[L(q,u, t)− p·u]

≡ −∂H
∂q

, (3.9)

where we have defined a new function to replace the Lagrangian, namely the
Hamiltonian

H(q,p, t) ≡ p·u− L(q,u, t) . (3.10)

Given the importance of ∂H/∂q it is natural to investigate whether
∂H/∂p plays a significant role as well. Differentiating eq. (3.10) we get

∂H

∂p
= u(q,p, t) +

n∑
i=1

[
pi −

∂

∂ui

L(q,u, t)

]
∂ui

∂p

= q̇ , (3.11)

where the vanishing of the expression in the square bracket and the identifi-
cation of u with q̇ follows from eqs. (3.6) and (3.7).

Summarizing eqs. (3.9) and (3.11),

q̇ =
∂H

∂p

ṗ = −∂H
∂q

, (3.12)

These equations are known as Hamilton’s equations of motion. As with
Lagrange’s equations they express the dynamics of a system with an arbitrary
number of degrees of freedom in terms of a single scalar function! Unlike the
Lagrangian dynamical system, the phase-space variables are treated on a
completely even footing—in Hamiltonian mechanics both the configuration-
space variables q and momentum-space variables p are generalized coordi-
nates. We define canonical coordinates as phase-space coordinates such that
the equations of motion can be expressed in the form of eq. (3.12) and a
canonical system as one for which canonical coordinates exist.
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Remark 3.3 The transition from the Lagrangian to the Hamiltonian in or-
der to handle the changed meaning of partial derivatives after a change of
variable is a special case of a technique known as a Legendre transformation.
It is encountered quite often in physics and physical chemistry, especially in
thermodynamics.

3.2.3 Example 1: Scalar potential

Consider the Lagrangian for a particle in Cartesian coordinates, so q =
{x, y, z} may be replaced by r = xex + yey + zez. Also assume that it moves
under the influence of a scalar potential V (r, t) so that the natural form of
the Lagrangian is

L = T − V = 1
2m|ṙ|

2 − V (r, t) . (3.13)

Then, from eq. (3.6)

p → p ≡ ∂L

∂ṙ
= mṙ , (3.14)

so that in this case the canonical momentum is the same as the ordinary
kinematic momentum. Equation (3.14) is solved trivially to give q̇ = u(p)
where u(p) = p/m. Thus, from eq. (3.10) we have

H =
|p|2

m
−
(
|p|2

2m
− V (r, t)

)
=

|p|2

2m
+ V (r, t)

= T + V . (3.15)

That is, the Hamiltonian is equal to the total energy of the system, ki-
netic plus potential. The fact that the Hamiltonian is an important physical
quantity, whereas the physical meaning of the Lagrangian is more obscure,
is one of the appealing features of the Hamiltonian approach. Both the
Lagrangian and Hamiltonian have the dimensions of energy, and both ap-
proaches can be called energy methods . They are characterized by the use
of scalar quantities rather than the vectors encountered in the direct use of
Newton’s second law. This has both the theoretical advantage of leading to
very general formulations of mechanics and the practical benefit of avoiding
some vector manipulations when changing between coordinate systems (in
fact, Lagrangian and Hamiltonian methods were developed before modern
vector notation was invented).
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Harmonic Oscillator

An example is the harmonic oscillator Hamiltonian corresponding to the
Lagrangian, eq. (2.61)

H =
p2

2m
+
mω0x

2

2
. (3.16)

From eq. (3.12) the Hamiltonian equations of motion are

ẋ =
p

m
ṗ = −mω0x . (3.17)

Gauge-transformed Harmonic Oscillator

Now consider the gauge-transformed harmonic oscillator Lagrangian eq. (2.75)

L′ = 1
2m(ẋ2 + 2ω0xẋ− ω2

0x
2) .

The canonical momentum is thus

p = ∂L′/∂ẋ = m(ẋ+ ω0x) (3.18)

and we see that the gauge transformation has effected a transformation of
the canonical momentum, even though the generalized coordinate x remains
the same. This is an example of a canonical transformation, about which we
will have more to say later.

Solving eq. (3.18) for ẋ we find u(p) = (p−mω0x)/m. Hence

H = p
(p−mω0x)

m
−
(

(p−mω0x)
2

2m
+ ω0x(p−mω0x)− 1

2mω
2
0x

2

)
=

(p−mω0x)
2

2m
+ 1

2mω
2
0x

2

= T + V . (3.19)

Thus, even though L was not of the natural form T − V in this case, the
Hamiltonian remains equal to the total energy, thus confirming that it is a
quantity with a more direct physical signifance than the Lagrangian. (The
functional form of the Hamiltonian changes under the gauge transformation
however, because the meaning of p changes.)
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3.2.4 Example 2: Physical pendulum

A nonlinear one-dimensional case is provided by the physical pendulum, in-
troduced in Sec. 2.4.1. Using eq. (2.27) in eq. (3.6) we get pθ = ml2θ̇. Thus
θ̇ = pθ/ml

2 and so the Hamiltonian, H = pθθ̇ − L, becomes

H(θ, pθ) =
p2

θ

2ml2
+mgl(1− cos θ) , (3.20)

which again is of the form T + V .

By conservation of energy (see also Sec. 3.3),

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

θ/2π

pθ XO O

Figure 3.1: Phase
space of the phys-
ical pendulum.

the Hamiltonian H = T + V is a constant
of the motion so the nature of the orbits in
phase space can be found simply by plotting
the contours of H as in Fig. 3.1 (which is in
units such that m = l = g = 1). We see that
the structure of the phase space is rather more
complicated than in the case of the harmonic
oscillator since there are two topologically dis-
tinct classes of orbit. One class is the rotating
orbits for which the pendulum has enough en-
ergy, H > 2mgl, to swing entirely over the top
so θ increases or decreases secularly (though
the physical position x = l sin θ does not).

The other class is the librating orbits for H < 2mgl implying that the
pendulum is trapped in the gravitational potential well and oscillates like a
pair of scales (hence the name). For |θ| � 1 we may expand the cosine so
V ≈ mglθ2/2 and the system is approximately a harmonic oscillator. The
equilibrium point θ = 0 or 2π, labelled O in Fig. 3.1, is a fixed point . The
orbits in its neighbourhood, like those of the harmonic oscillator, remain in
the neighbourhood for all time (i.e. the fixed point is stable or elliptic).

The dividing line H = 2mgl between the two topological classes of orbit is
called the separatrix, and on the separatrix lies another fixed point, labelled
X in Fig. 3.1. This corresponds to the case where the pendulum is just
balanced “upside down”. Almost all orbits in the neighbourhood of an X
point eventually are repelled far away from it, and thus it is referred to as
an unstable or hyperbolic fixed point.
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3.2.5 Example 3: Motion in e.m. potentials

Now consider the case of a charged particle in an electromagnetic field with
magnetic vector potential A and electrostatic potential Φ. The Lagrangian
is given by eq. (2.44) and thus, from eq. (3.6),

p ≡ ∂L

∂ṙ
= mṙ + eA(r, t) . (3.21)

Thus u(p) = p/m− eA/m and, from eq. (3.10) we have

H =
(p− eA)·p

m
−
(
|p− eA|2

2m
+
e(p− eA)·A

m
− eΦ(r, t)

)
=

|p− eA(r, t)|2

2m
+ eΦ(r, t)

= T + V . (3.22)

Thus we find again that, although the Lagrangian cannot be put into the
natural form T − V (r), the Hamiltonian is still the total energy, kinetic plus
electrostatic potential energy.

3.2.6 Example 4: The generalized N-body system

Let us now revisit the general case which led to the original definition of the
Lagrangian in Sec. 2.3, the case of N particles interacting via a scalar N -body
potential, possibly with constraints (which we here assume to be independent
of time), so that the number of generalized coordinates is n ≤ 3N . Then, by
eq. (2.25) and eq. (2.7) (assuming the function xk(q) to be independent of
time) the natural form of the Lagrangian is

L = T − V

= 1
2

n∑
i,j=1

N∑
k=1

mkq̇i
∂xk

∂qi
·∂xk

∂qj
q̇j − V (q)

= 1
2

n∑
i,j=1

q̇iµi,j q̇j − V (q) , (3.23)

where the symmetric mass matrix

µi,j(q) ≡
N∑

k=1

mk
∂xk

∂qi
·∂xk

∂qj
(3.24)



3.2. MECHANICS AS A DYNAMICAL SYSTEM 49

is the metric tensor for a configuration-space mass-weighted “length” element
ds defined by ( ds)2 ≡

∑
k mk dl2k. From eq. (3.4), we see that it is the Hessian

matrix for this system.
Then, using eq. (3.23) in eq. (3.6)

pi =
n∑

j=1

µi,j(q)q̇j . (3.25)

Assuming none of the particles is massless, µi,j is a positive-definite ma-
trix, so its inverse µ−1

i,j exists and we can formally solve eq. (3.25) for q̇i to
give

ui(q,p, t) =
n∑

j=1

µ−1
i,j pj . (3.26)

Then, from eq. (3.10) we have

H =
n∑

i,j=1

piµ
−1
i,j pj −

(
1
2

n∑
i,j,i′,j′=1

piµ
−1
i,i′µi′,j′µ−1

j′,jpj − V (q)

)

= 1
2

n∑
i,j=1

piµ
−1
i,j pj + V (q)

= T + V . (3.27)

Thus, the Hamiltonian is again equal to the total energy of the system. This
result does not hold in the case of a time-dependent representation, xk(q, t).
[See Problems 3.5.1(c) and 4.7.1.]

Particle in a central potential

As a simple, two-dimensional example of a problem in non-Cartesion coor-
dinates we return to the problem of motion in a central potential, expressed
in plane polar coordinates in Sec. 2.4.2. Recapitulating eq. (2.33),

L = 1
2m
(
ṙ2 + r2θ̇2

)
− V (r) .

Comparing with eq. (3.23) we see that the mass matrix is diagonal

µ =

[
m 0
0 mr2

]
, (3.28)

and thus can be inverted simply taking the reciprocal of the diagonal ele-
ments. Hence, from eq. (3.27)

H =
p2

r

2m
+

p2
θ

2mr2
+ V (r) . (3.29)
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3.3 Time-Dependent and Autonomous Hamil-

tonian systems

An autonomous dynamical system is one in which the vector field f [see
eq. (3.1)] depends only on the phase-space coordinates and has no explicit
dependence on t. (The reason for the name is that explicit time dependence
would come from external forcing of the system, whereas “autonomous”
means independent or self-governing.) In the Hamiltonian case this means
that H has no explicit time dependence. Conversely, if there is an external
time-varying perturbation, then H = H(p, q, t).

Consider the time rate of change of the Hamiltonian, Ḣ ≡ dH/ dt, follow-
ing the phase-space trajectory. Using the Hamiltonian equations of motion,
eq. (3.12),

dH

dt
=

∂H

∂t
+ q̇·∂H

∂q
+ ṗ·∂H

∂p

=
∂H

∂t
+
∂H

∂p
·∂H
∂q

− ∂H

∂q
·∂H
∂p

≡ ∂H

∂t
. (3.30)

Thus, if H does not depend explicitly on time, so its partial time deriva-
tive vanishes, then its total time derivative also vanishes. That is, in an
autonomous Hamiltonian system the Hamiltonian is an integral of motion.

We have seen above that H can often be identified as the total energy.
When this is the case we may interpret the completely general result above as
a statement of conservation of energy. More generally, comparing eq. (3.10)
and eq. (2.84) we recognize H as the negative of the energy integral I for
autonomous systems as predicted by Noether’s theorem.

3.4 Hamilton’s Principle in phase space

Let us express the action integral S in terms of q and p and show that we
may derive Hamilton’s equations of motion by making S stationary under
variations of the trajectory in phase space, rather than in configuration space.

To find a suitable definition for the action integral, we first rearrange
eq. (3.10) to get L on the left-hand side. Then we replace u(q,p, t) by q̇ in
the term p·u and thus define the phase-space Lagrangian

Lph(q, q̇,p, t) ≡ p·q̇ −H(q,p, t) , (3.31)
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If q̇ = u(q,p, t) were identically satisfied, even on arbitrarily varied phase-
space paths, then Lph would simply be L expressed in phase-space coordi-
nates. However, one can easily construct a counter example to show that
this is not the case: consider a variation of the path in which we can vary
the direction of its tangent vector, at some point (q,p), while keeping this
point fixed (see Sec. 4.2 for an illustration of this). Then q̇ changes, but u
remains the same. Thus Lph and L are the same value only on the subset of
paths (which includes the physical paths) for which p·q̇ = p·u(q,p, t).

Replacing L by Lph in eq. (2.26) we define the phase-space action integral

Sph[q,p] =

∫ t2

t1

dt Lph(q,p, q̇, t) . (3.32)

We shall now show that requiring δSph = 0 for arbitrary variations about a
given path implies that that path is such that Hamilton’s equations of motion
are satisfied at all points along it. Since we concluded above that Lph and L
were not the same on arbitrary nonphysical paths, this variational principle
is subtly different from the Lagrangian version of Hamilton’s principle, and
is sometimes called the modifed Hamilton’s Principle.

We know from variational calculus that Sph is stationary under arbitrary
variations of the phase-space path (with endpoints fixed) if and only if the
Euler–Lagrange equations δLph/δq = δLph/δp = 0 are satisfied at all points
on the path, where the variational derivatives are as defined in eq. (1.14),
with p now being regarded as an independent coordinate

δLph

δq
=
∂Lph

∂q
− d

dt

∂Lph

∂q̇
= −∂H

∂q
− ṗ = 0 ,

δLph

δp
=
∂Lph

∂p
= q̇ − ∂H

∂p
= 0 . (3.33)

These are identical to Hamilton’s equations of motion, eq. (3.12), as claimed.

Remark 3.4 Note that, although we fix the endpoints in the modified Hamil-
ton’s Principle, we will not be able to satisfy Hamilton’s equations of motion
at all points on the path unless the endpoints are both chosen to lie on a
physical path. This is because the fixing of the initial phase-space point speci-
fies 2n initial conditions, which completely determines the physical path (i.e.
the one that obeys the equations of motion). This is in contrast with the
the Lagrangian version of Hamilton’s Principle, where we fixed only the n
configuration-space coordinates q. The problem of finding the physical path
between two given configuration-space points thus involves specifying only n
initial and n final data, which is generally exactly the right number to allow
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us to find one (or more) solutions of the equations of motion passing through
arbitrarily chosen initial and final points.
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3.5 Problems

3.5.1 Constraints and moving coordinates

(a) This revisits Problem 1.6.1. Write down a Lagrangian for the problem of
two particles of mass m1 and m2 connected by a light rigid rod of length l in
a gravitational field g. Take the generalized coordinates of the system to be
q = {x, y, z, θ, φ}, with the coordinates of the two particles being given by

x1 = x− α1l sin θ cosφ

y1 = y − α1l sin θ sinφ

z1 = z − α1l cos θ

x2 = x+ α2l sin θ cosφ

y2 = y + α2l sin θ sinφ

z2 = z + α2l cos θ ,

where α1 ≡ m2/(m1 + m2) and α2 ≡ m1/(m1 + m2) [so that (x, y, z) is the
centre of mass].

(b) Use this Lagrangian to construct the Hamiltonian for the system. Is it
of the form T + V ?

(c) Find the Hamiltonian corresponding to the Coriolis Lagrangian in Prob-
lem 2.8.1,

L = 1
2R

2
[
θ̇2 + cos2 θ (Ω + φ̇)2

]
− V (θ, φ) .

Is it of the form T + V ?

3.5.2 Anharmonic oscillator phase space

Find the Hamiltonian corresponding to the Lagrangian of the anharmonic
oscillator in Problem 2.8.2. Sketch contours of H(x, p) in the soft potential
case for (a) H < mω2

0l
2
0/8 and (b) H > mω2

0l
2
0/8. Indicate representative

trajectories of the system in phase-space, showing the direction of travel.
Try to include representatives of each qualitatively distinct orbit.

3.5.3 2-D motion in a magnetic field

Consider the motion of a particle of charge e and mass m in a straight, in-
finitely long magnetic confinement system with vector potential A = ψ(x, y)ez.
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(a) Show that Bx = ∂ψ/∂y, By = −∂ψ/∂x, Bz = 0 and thus that contours
of ψ(x, y) define magnetic field lines.

(b) Show that the Hamiltonian is

H =
p2

x

2m
+

p2
y

2m
+

(pz − eψ)2

2m
,

write down the Hamiltonian equations of motion and give two integrals of
the motion.

(c) It can be shown that in any region with no electric current, ψ(x, y) can be
represented as the real part of an analytic function of the complex variable
ζ ≡ x+ iy, ψ(x, y) = Re Ψ(ζ). Show that the equations of motion for ζ and
pζ ≡ px + ipy are

ζ̇ =
1

m
pζ ,

ṗζ =
e

m
[pz − eRe Ψ(ζ)] [Ψ′(ζ)]∗ ,

where the prime on Ψ means derivative with respect to its argument, and ∗
means complex conjugate.



Chapter 4

Canonical transformations

4.1 Introduction

A canonical transformation is a transformation of the phase-space coordi-
nates q and p to new coordinates Q and P that obey Hamilton’s equations
of motion, eq. (3.12), with a new Hamiltonian K(Q,P , t).

The discussion in Sec. 3.2.6 shows the general form of p for an N -particle
system in an arbitrary, stationary generalized coordinate system. In this case,
if we change from one configuration-space coordinate system, q, to another,
Q, then the transformation of p to P follows from comparing eq. (3.25) in the
two coordinate systems. For instance, if we go from coordinates x, y in a two-
dimensional system to polar coordinates r, θ, the canonical transformation
is

x = r cos θ

y = r sin θ

px = mẋ = m(ṙ cos θ − rθ̇ sin θ) = pr cos θ − pθ sin θ

r

py = mẏ = m(ṙ sin θ + rθ̇ cos θ) = pr sin θ +
pθ cos θ

r
K(r, θ, pr, pθ) = H(x, y, px, py) . (4.1)

Thus one obvious class of canonical transformation is produced by a
change of configuration-space coordinates, or point transformation, q =
g(Q, t) as discussed in the context of the general Lagrangian formalism in
Sec. 2.6. Applying eq. (2.68) and using eq. (2.69) we find the general rela-
tionship

Pi =
∂

∂Q̇i

L(g(Q, t), ġ(Q, Q̇, t), t)

55
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= p· ∂ġ
∂Q̇i

=
n∑

j=1

∂gj

∂Qi

pj . (4.2)

Thus by inverting the matrix Ti,j ≡ ∂gj/∂Qi, we complete the construction
of the canonical transformation by finding p = T−1·P . We can also show
by direct calculation that K(Q,P ) = H(q,p) for time-independent trans-
formations as in eq. (4.1). The discussion of the time dependent case will be
left to the next section.

We have also encountered another special case of a canonical transforma-
tion (for which p was changed but q remained the same) in Sec. 3.2.3 where
we compared the Hamiltonian for the harmonic oscillator derived from the
natural form for the Lagrangian with that from a gauge-transformed version.
Likewise, in the case of the particle in an electromagnetic field treated in
Sec. 3.2.5 an electromagnetic gauge transformation effects a change in the
momenta but leaves the configuration-space coordinates unaffected.

This suggests that gauge transformations may hold the clue to construct-
ing a general theory of canonical transformations and we show in the next
section that this is indeed the case.

4.2 Generating functions

To discuss gauge transformations in the Hamiltonian context we use the mod-
ified Hamilton’s Principle based on the phase-space action integral eq. (3.32),

Sph[q,p] =

∫ t2

t1

dt Lph(q, q̇,p, ṗ, t) , (4.3)

which we showed to be stationary on physical paths with the form of phase-
space Lagrangian given in eq. (3.31),

L
(1)
ph ≡ p·q̇ −H(q,p, t) . (4.4)

However, as in Sec. 2.6.2, we can find a physically equivalent Lagrangian
by adding to L

(1)
ph the total time derivative of an arbitrary function, M(q,p, t)

say. Although it clearly has no effect on Hamilton’s equations of motion, and
thus does not generate a canonical transformation, we shall have use of the
particular choice M = −q·p. This gives the alternative, gauge-transformed
phase-space Lagrangian

L
(2)
ph ≡ −q·ṗ−H(q,p, t) . (4.5)
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Now assume we have a phase-space transformation (q,p) 7→ (Q,P ) where
the mapping between the two coordinates is invertible and sufficiently smooth
that we can evaluate the required derivatives. Since we are seeking a canon-
ical transformation, there must also exist an action integral S ′ph of the form

S ′ph[Q,P ] =

∫ t2

t1

dt L′ph(Q, Q̇,P , Ṗ , t) (4.6)

that is stationary under variations vanishing at the endpoints for the same
paths (represented in the new coordinates) as Sph is, where L′ph is a phase-
space Lagrangian in either of the forms given in eqs. (4.4) or (4.5) with q,p
replaced by Q,P and H replaced by K. For example,

L
′(1)
ph (Q, Q̇,P , t) ≡ P ·Q̇−K(Q,P , t) . (4.7)

As for the gauge transformation discussed above, we ensure simultaneous
stationarity of the two functionals by requiring that the old and new phase-
space Lagrangians differ only by the total time derivative of some function,
which we denote by F ,

Lph(q, q̇,p, ṗ, t) = L′ph(Q, Q̇,P , Ṗ , t) +
dF

dt
. (4.8)

This equality is to hold on all phase-space paths, not only the physical ones.
Do we take F to be a function of the old or of the new variables? The

traditional answer is to take F to be a mixed function of n of the old and
n of the new (since there are only 2n independent variables), giving four
possibilities

F1(q,Q, t), F2(q,P , t), F3(p,Q, t), F4(p,P , t) . (4.9)

These functions are known as the generating functions of types 1 to 4. We
require the two sets of coordinates used to be functionally independent, so
that F really is a function of 2n independent phase-space coordinates. This
condition rules out, for example, the use of the type 1 generating function for
point transformations, including the identity transformation. Otherwise the
choice of generating function is somewhat arbitrary and we choose whichever
is convenient for the problem.

The total time derivatives in the four cases are given by

dF1

dt
= q̇·∂F1

∂q
+ Q̇·∂F1

∂Q
+
∂F1

∂t
(4.10)

dF2

dt
= q̇·∂F2

∂q
+ Ṗ ·∂F2

∂P
+
∂F2

∂t
(4.11)



58 CHAPTER 4. CANONICAL TRANSFORMATIONS

dF3

dt
= ṗ·∂F3

∂p
+ Q̇·∂F3

∂Q
+
∂F3

∂t
(4.12)

dF4

dt
= ṗ·∂F4

∂p
+ Ṗ ·∂F4

∂P
+
∂F4

∂t
. (4.13)

The four types of generating function correspond to choosing the two
alternative forms, eqs. (4.4) and (4.5), on either side of the gauge transfor-
mation, eq. (4.8), as indicated in the following table:

L
(1)
ph (q, q̇,p) = L

(1)
ph (q, q̇,p) =

L
′(1)
ph (Q, Q̇,P ) + Ḟ1(q,Q) , L

′(2)
ph (Q,P , Ṗ ) + Ḟ2(q,P ) ,

L
(2)
ph (q,p, ṗ) = L

(2)
ph (q,p, ṗ) =

L
′(1)
ph (Q, Q̇,P ) + Ḟ3(p,Q) , L

′(2)
ph (Q,P , Ṗ ) + Ḟ4(p,P ) ,

(4.14)

where Ḟi denotes dFi/ dt and we have suppressed explicit time dependences
for brevity.

q
1

p
1

q
2 
... p

n

z(t)

z(t
1
)

z(t
2
)

Figure 4.1: Some possible paths z(t) ≡ (q(t),p(t)) in phase space,
each passing through the same point at time t but with different ż.

As indicated in eq. (4.14), Type 1 generating functions combine most

naturally with the choice Lph = L
(1)
ph , L′ph = L

′(1)
ph , since both the Lagrangians
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and Ḟ1 involve only q̇ and Q̇, but not ṗ or Ṗ . Substituting eq. (4.10) in
eq. (4.8) with these choices and collecting terms in q̇ and Q̇ we get(

p− ∂F1

∂q

)
·q̇ −

[
H(q,p, t) +

∂F1

∂t

]
=

(
P +

∂F1

∂Q

)
·Q̇−K(Q,P , t) . (4.15)

Since eq. (4.8) is to hold on all paths, it must in particular hold at any given
phase-space point (q,p) for all possible paths passing through this point. As
illustrated in Fig. 4.1 the possible total time derivatives (q̇, ṗ) span the full
2n-dimensional space of tangent directions through the given point. Since we
require q and Q to be functionally independent, the possible choices of q̇ and
Q̇ also span a 2n-dimensional space, and thus eq. (4.15) can hold identically
only if the coefficients of q̇ and Q̇ vanish separately

p =
∂F1

∂q
(4.16)

P = −∂F1

∂Q
, (4.17)

finally leaving

K = H +
∂F1

∂t
. (4.18)

These equations define, albeit implicitly, a canonical transformation.
For type 2 generating functions we choose Lph = L

(1)
ph , L′ph = L

′(2)
ph so

that eq. (4.8) becomes(
p− ∂F2

∂q

)
·q̇ −

[
H(q,p, t) +

∂F2

∂t

]
= −

(
Q− ∂F2

∂P

)
·Ṗ −K(Q,P , t) . (4.19)

Equating the coefficients of q̇ and Ṗ to zero we get the implicit equations
defining type 2 canonical transformations

p =
∂F2

∂q
(4.20)

Q =
∂F2

∂P
(4.21)

and

K = H +
∂F2

∂t
. (4.22)



60 CHAPTER 4. CANONICAL TRANSFORMATIONS

For type 3 we choose Lph = L
(2)
ph , L′ph = L

′(1)
ph and find

q = −∂F3

∂p
(4.23)

P = −∂F3

∂Q
(4.24)

and

K = H +
∂F3

∂t
. (4.25)

For type 4 we choose Lph = L
(2)
ph , L′ph = L

′(2)
ph , to find

q = −∂F4

∂p
(4.26)

Q =
∂F4

∂P
(4.27)

and

K = H +
∂F4

∂t
. (4.28)

4.2.1 Example 1: Adiabatic Oscillator

Consider the harmonic oscillator Lagrangian eq. (2.61) and Hamiltonian
eq. (3.16), taking ω0 to be a slowly varying function of time which never
vanishes, ω0 = ω0(εt) 6= 0, where ε is small parameter. (Introducing ε is
a useful device for the formal asymptotic theory, in which we consider the
scaling of error terms as ε→ 0.)

Now consider the Hamiltonian, H = p2/2m+mω2
0x

2/2 and try the type
1 generating function

F1 = 1
2mω0x

2 cotφ , (4.29)

with x playing the role of the old generalized coordinate, q, and φ playing
the role of the new generalized coordinate, Q. Using eq. (4.29) in eqs. (4.16)
and (4.17) we have

p = mω0x cotφ (4.30)

P = 1
2mω0x

2 cosec2φ . (4.31)

Eliminating x between these equations we find the canonical transformation
between x, p and φ, P

p = (2mω0P )1/2 cosφ , (4.32)
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x =

(
2P

mω0

)1/2

sinφ . (4.33)

Comparing eq. (4.33) with eq. (2.62) we identify P = mω0A
2/2. Com-

paring with eq. (2.65) we see that P is in fact J , the action. Thus we should
be able to show its adiabatic invariance from the Hamiltonian equations of
motion. First we need the new Hamiltonian, which from eq. (4.18) is given
by

K =
p2

2m
+
mω2

0x
2

2
+
mω̇0x

2 cotφ

2

= ω0P +
1

2

d lnω0

dt
P sin 2φ . (4.34)

The equations of motion are thus

φ̇ =
∂K

∂P
= ω0 +

1

2

d lnω0

dt
sin 2φ (4.35)

and

Ṗ = −∂K
∂φ

=
d lnω0

dt
P cos 2φ . (4.36)

So far the results are exact, but to proceed further (unless we solve these
equations numerically) we need to make use of the expansion parameter ε.
Observe that d lnω0/ dt = εω′0(εt)/ω0 is small, O(ε). Thus to leading order
we may drop the sin 2φ term in eq. (4.35) because it is small in comparison
with ω0, so that we are making the same approximation, ω ≡ φ̇ ≈ ω0, as we
were led to in the averaged Lagrangian approach. Integrating the equation
to get the phase as a function of time we have

φ(t) ≈
∫ t

t0

ω0(εt) , (4.37)

where t0 is an arbitrary starting time. Thus the phase increases with time
without bound. Functions with this property are known as secular terms.

The right-hand side of eq. (4.36) is O(ε) so we see that P is approximately
constant over short times. However we can say more than that since we can
estimate the long-term change by integrating the equation,

lnP (t)− lnP0 ≈
∫ t

t0

dt
d lnω0

dt
cos 2φ . (4.38)

Using eq. (4.37), we see that the integrand averages to zero over times long
compared with 1/ω0 and thus the integral will also be oscillatory, with no
secular increase. Thus the canonical transformation method confirms the
adiabatic invariance of the action.
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Remark 4.1 As implied by the remark at the end of Sec. 2.5, we could go on
to construct a formal asymptotic procedure in which the canonical transfor-
mation was successively refined to remove the oscillatory terms in P at each
order in ε to produce an adiabatic invariant that is conserved to arbitrarily
high order (but not exactly, because of the possibility of asymptotically small
corrections “beyond all orders”).

Note that, apart from the small correction term ∂F1/∂t, K is still ap-
proximately the total energy of the oscillator, E ≡ T +V , so eq. (4.34) gives
P ≈ E/ω0. The quantum mechanical interpretation of this was pointed out
around 1911 by Einstein: If there are N >> 1 quanta of energy in the os-
cillator, then E = N~ω0 (ignoring the zero-point energy 1

2~ω0). Thus the
adiabatic invariance of P = N~ can be interpreted as saying the number of
quanta is conserved during adiabatic changes in the system.

4.2.2 Example 2: Point transformations

As an example of a type 2 generating function, take

F2(q,P , t) = G(q, t)·P , (4.39)

where G(q, t) is a function such that the matrix ∂Gj/∂qi is nonsingular.
Then eqs. (4.20) and (4.21) give

pi =
n∑

j=1

∂Gj

∂qi
Pj ,

Q = G(q, t) (4.40)

The second equation shows that eq. (4.39) is the generating function for a
point transformation, and the first equation is the same as eq. (4.2) with
the roles of the old and new variables interchanged. However, in the case
of a time-dependent transformation, the generating function method now
provides us with the transformation of the Hamiltonian, a useful result that
we did not have easily before. That is, substituting eq. (4.39) in eq. (4.22)
gives

K(Q,P , t) = H(q,p, t) +
∂G(q, t)

∂t
·P . (4.41)

Note that included among the point transformations is the identity trans-
formation. Thus, the class of canonical transformations that can be generated
by a type 2 generating function includes the identity, whereas the type 1 class
does not [though a type 1 transformation may come arbitrarily close to the
identity—see Problem 4.7.2(c) and consider the limit ∆t→ 0].
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4.3 Infinitesimal canonical transformations

The class of canonical transformations continuously connected to the identity
transformation is important for several reasons—it includes time evolution,
continuous symmetry operations and canonical perturbation theory.

Since type 1 transformations do not include the identity, we consider the
type 2 generating functions F2(q,P , t) and note from eqs. (4.20) and (4.21)
that F2 = q·P gives p = ∂F2/∂q = P and Q = ∂F2/∂P = q. That is, q·P
generates the identity transformation.

We now move continuously away from the identity among a family of
canonical transformations parameterized by ε, say, such that ε = 0 is the
identity. The generating function of such a family can be written in the form

F2 = q·P + σ(q,P , t)ε+O(ε2) , (4.42)

where the notation O(ε2) means a term scaling like ε2 in the limit ε→ 0, and
thus negligibly small compared with the O(ε) term. The term σ is called the
infinitesimal generator of the family of transformations.

From eqs. (4.20) and (4.21) we have

Q =
∂F2

∂P
= q +

∂σ(q,P , t)

∂P
ε+O(ε2) ,

p =
∂F2

∂q
= P +

∂σ(q,P , t)

∂q
ε+O(ε2) . (4.43)

Due to the nature of the generating function method these equations are
mixed between the perturbed and unperturbed canonical variables, but they
can easily be solved by iteration to give, up to first order in ε,

Q(q,p, t, ε) = q +
∂σ(q,p, t)

∂p
ε+O(ε2) ,

P (q,p, t, ε) = p− ∂σ(q,p, t)

∂q
ε+O(ε2) . (4.44)

Also, inserting eq. (4.42) in eq. (4.22),

K(Q,P , t, ε) = H(q,p, t) +
∂σ(q,p, t)

∂t
ε+O(ε2) . (4.45)

This is again a mixed expression in the perturbed and unperturbed variables
so we use eq. (4.44) to get an explicit expression

K(q,p, t, ε) = H(q,p, t) +

(
∂σ(q,p, t)

∂q
·∂H
∂p

− ∂σ(q,p, t)

∂p
·∂H
∂q

+
∂σ(q,p, t)

∂t

)
ε+O(ε2) . (4.46)
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4.3.1 Time evolution

Normally ε is a parameter that we imagine varies at fixed time, but it is also
of great interest to consider the case where the parameter is time itself. That
is, we consider transformations at times t + δt where t is fixed but the time
variation comes from taking ε = δt. Now consider the choice σ(q,p, t) =
H(q,p, t). Then we see by comparing eq. (4.44) with Hamilton’s equations
of motion, eq. (3.12), that

Q(q,p, t, δt) = q(t) + q̇(t)δt+O((δt)2) = q(t+ δt) +O((δt)2) ,

P (q,p, t, δt) = p(t) + ṗ(t)δt+O((δt)2) = p(t+ δt) +O((δt)2) .(4.47)

That is, we have shown that the Hamiltonian is the infinitesimal generator
for dynamical evolution in time.

Since the result is true at all times t, we can integrate it to obtain a
statement valid over finite time intervals. First we introduce some dynami-
cal systems jargon by defining the Hamiltonian flow , which is the function
ϕt,s(qs,ps) evolving any phase space point (qs,ps) at time s to the corre-
sponding point on the physical path at time t: ϕt,s(qs,ps) = (q(t),p(t)),
with q̇ = ∂H/∂p and ṗ = −∂H/∂q. Then we can state the integrated result
in the following form: Hamiltonian flows are canonical transformations.

A commonly encountered example of such a flow is what we shall call a
stroboscopic map, ϕtn+1,tn(qn,pn), which evolves a phase-space point at time
tn = n∆t to the corresponding point at time tn+1 = (n+ 1)∆t as if the state
of the system were captured periodically in the flashes of a stroboscope.

The main use of of such a stroboscopic map is the analysis of the dynamics
of a nonautonomous, periodically forced system, in which one takes ∆t to
be the period of the forcing. In this case the map is called a period map. If
we visualize the motion in the (2n+ 1)-dimensional space formed by adding
the time dimension to phase space, and evaluate t modulo ∆t (i.e. make the
space topologically toroidal), we may think of the period map as giving the
intersections of orbits with the Poincaré surface of section, t = 0. (This is
most useful when n = 1, for then the surface of section is two-dimensional
and easy to visualize.) For this reason systems where the Hamiltonian has
an explicit periodicity in time are sometimes called (2n + 1)-dimensional
Hamiltonian systems .

Another example is the construction of a numerical integrator of the
ODEs making up Hamilton’s equations of motion. Of necessity we replace
the infinite number of points in time of the exact problem with a finite num-
ber of points in a numerical approximation. Although we do not know the
flow exactly (otherwise there would be no point in integrating the equations
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numerically) it is sometimes very important to require the approximate stro-
boscopic map to be exactly canonical. (The full significance of the fact that
a map is canonical will become apparent when we have established some
more properties of canonical transformations.) In this case the numerical
algorithm is called a symplectic integrator. An example is the discrete-time
dynamical system derived in Problem 4.7.2(c).

4.4 Poisson brackets

We define the canonical Poisson bracket {f, g} between any two phase-space
functions f and g by1

{f, g} ≡ ∂f

∂q
·∂g
∂p

− ∂f

∂p
·∂g
∂q

. (4.48)

Note that the bracket is an antisymmetric bilinear form in f and g:
{f, g} = −{g, f}, so that {f, f} ≡ 0. We observe that this algebraic prop-
erty is analogous to the properties of the commutator of two operators, A
and B say: [A,B] ≡ AB − BA. Indeed there is a deep physical connection
between the commutator and the Poisson bracket through the quantum-
mechanical correspondence principle: if aop and bop are quantum-mechanical
observables, then the classical limit may be obtained by replacing [aop, bop]
with i~{a, b}, where a and b are the classical counterparts of the respective
quantum-mechanical operators.

A property shared with the commutator is the Jacobi identity

{u, {v, w}}+ {v, {w, u}}+ {w, {u, v}} ≡ 0 . (4.49)

The utility of the Poisson bracket notation lies in the fact that Hamilton’s
equations of motion, eq. (3.12), can be written in the symmetric fashion

q̇ = {q, H}
ṗ = {p, H} , (4.50)

which allows the more compact notation

ż = {z, H} , (4.51)

where z ≡ (q,p) is the 2n-dimensional phase-space position defined by con-
catenating q and p.

1Do not confuse these curly brackets with the similar notation we have been using for
sets of variables. We follow the sign convention used by Goldstein (see Sec. 6) whereas
Scheck defines the Poisson bracket with the opposite sign.



66 CHAPTER 4. CANONICAL TRANSFORMATIONS

We can generalize this result to the time derivative of any function,
f(z, t),

df

dt
≡ ż·∂f

∂z
+
∂f

∂t
= {f,H}+

∂f

∂t
. (4.52)

For example, if we take f = H we immediately get

dH

dt
=
∂H

∂t
, (4.53)

which agrees with eq. (3.30). Note that, in an autonomous system, f is an
integral of the motion if it does not depend explicitly on time and its Poisson
bracket with the Hamiltonian vanishes.

We can also write eqs. (4.44) and (4.46) in the more compact forms

Z(z, t, ε) = z + {z, σ(z, t)}ε+O(ε2) , (4.54)

where Z ≡ (Q,P ), and

K(z, t, ε) = H(z, t) +

(
{σ(z, t), H(z, t)}+

∂σ(z, t)

∂t

)
ε+O(ε2) . (4.55)

4.4.1 Symmetries and integrals of motion

In this section we consider only autonomous systems. From eq. (4.55) the
Hamiltonian is invariant under the canonical transformations generated by
σ if and only if its Poisson bracket with σ(z) vanishes. But eq. (4.52) shows
that this implies that σ is an integral of the motion. That is, the infinitesimal
generator of a symmetry of the Hamiltonian is an integral of the motion.

For example, take σ = pφ, the momentum canonically conjugate to q = φ,
the angle measured about the z-axis. Then eq. (4.44) implies that φ is
mapped to φ + ε. Thus we see that pφ is the infinitesimal generator for ro-
tations about the z-axis. If the system is rotationally symmetric then the
Hamiltonian is invariant under increments in φ. Then the above result shows
that pφ is an integral of the motion. This is a Hamiltonian form of Noether’s
theorem. (Of course the result is obvious if we use φ as a generalized coordi-
nate, since the absence of φ from the Hamiltonian immediately gives ṗφ = 0,
but we now do not need to use such coordinates—all we need to do is evaluate
the Poisson bracket of H with pφ.)

4.4.2 Perturbation theory

Often we are given a system for which the Hamiltonian may be resolved
into the form H0 + εH1, where the case ε = 0 is exactly solvable and H1



4.5. ACTION-ANGLE VARIABLES 67

represents the effect of a small perturbation. (An example is the planets
moving around the sun—the motion of a single planet was exactly solved by
Newton, and shown to give rise to Kepler’s Laws. Thus we can take H0 to be
the Hamiltonian for the planets with only the gravitational field of the sun
included, and put the small gravitational interactions between the planets
into H1. This is known as a problem in celestial mechanics .)

One strategy for solving the perturbed problem is to successively trans-
form the new Hamiltonian into an exactly integrable one order by order in a
power series in ε. This is known as canonical perturbation theory .

The classical method of generating the canonical transformations is called
Von Zeipel’s method, and this consists of extending eq. (4.42) to higher order
in ε. The problem with this method is the awkward mixture of old and new
variables that has to be unscrambled. A more modern approach, amenable
to computerized algebraic manipulation, is known as the Lie transform. This
is an alternative to the traditional generating function method that can be
motivated by noting that time evolution generates a canonical transformation
continously connected to the identity. If we regard ε as pseudo-time, then we
can use a pseudo-Hamiltonian, W say, to generate a canonical transformation
that is an explicit function of only the old variables.

There are various variants of the Lie transform method, but they all
make use of the idea that we can represent the Poisson bracket with an
infinitesimal generator W as an operator LW such that its action on any
phase-space function f is given by

LWf ≡ {f,W} . (4.56)

In the case that W does not depend on ε, the canonical transformation is
effected by exponentiating LW

exp(εLW ) = 1 + εLW + 1
2ε

2L2
W + . . . . (4.57)

4.5 Action-Angle Variables

It is clear from the equations of motion that if the Hamiltonian does not
depend on one of the generalized coordinates qi then the canonical momentum
conjugate to it, pi, is conserved. (We can as before refer to qi as ignorable,
though the terminology cyclic coordinate is also used in this context.)

This suggests a general strategy for solving Hamiltonian dynamics problems—
make a canonical transformation to new canonical coordinates Q,P such
that the new Hamiltonian is cyclic in all the new generalized coordinates
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K = K(P ) (we consider the autonomous case only here). Then the dynam-
ics is very simple since all the new momenta are constants of the motion
and thus the generalized velocities ∂K/∂Pi are also constant, so all the new
generalized coordinates evolve linearly in time

Qi = Qi0 +
∂K

∂Pi

t . (4.58)

A system for which this strategy can, in principle at least, be carried out is
called integrable. Clearly, since there are n of the Pi, a necessary condition for
integrability is that there must exist n independent integrals of the motion
that are well behaved as functions of the old canonical coordinates for all
time, including the limits t → ±∞. (For an autonomous system in fact the
integrals of motion have no explicit dependence on t at all.)

If the problem is such that the orbits remain in a bounded region of phase
space, then the coordinates have to oscillate in a quasiperiodic fashion, rather
than increasing secularly. In this, rather general, case the orbits are confined
to topological tori labelled by the new momenta, and the new coordinates Qi

can be taken to be angles defined on the tori. The dimensions of the Pi are
then those of action, and thus such a set of canonical coordinates is called
action-angle variables. Since the Hamiltonian flow maps the Pi = const tori
onto themselves, they are invariant sets of the dynamical system (just as
a fixed point is an invariant set consisting of just one point) and are often
called invariant tori.

We have already come across a transformation to action-angle coordi-
nates, eq. (4.29), for the harmonic oscillator problem (in the case when
ω0 = const). Other well known integrable systems are the particle moving
under the influence of an inverse-square law force, and the physical pen-
dulum, but time does not permit the development of explicit action-angle
transformations for these systems.

Although much of the classical mechanics literature is concerned with in-
tegrable problems it must be emphasized that integrability is not generic—
given an arbitrarily chosen Hamiltonian, from the set of all possible ones, it
will almost always not be integrable. Nevertheless we are very often inter-
ested in cases which are not far integrability, in the sense that the Hamil-
tonian can be decomposed into the form H0 + εH1 required to apply per-
turbation theory (see Sec. 4.4.2), where H0 is integrable. Thus the study
of integrable systems remains an important one. Of particular interest are
infinite-dimensional integrable Hamiltonian systems, such as the Korteweg–
de Vries equation and nonlinear Schrödinger equation that give rise to soliton
phenomena.
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If the problem is not integrable, perturbation theory will in general give
results useful over only a finite time interval as the long-time behaviour may
be chaotic and impossible to describe in detail. However by choosing the
region of phase space carefully one may be able to construct an invariant
torus by perturbation theory, even in a nonintegrable system, as shown by
Kolmogorov, Arnol’d and Moser (the KAM theorem).

The essential idea in this theory is to find an invariant torus of the un-
perturbed system which is as far from resonance as possible and to keep
changing parameters in such as way as ε is increased away from zero that the
torus remains nonresonant.

Although we shall not go into this further, some idea of the meaning of
resonance can be had by considering the pendulum problem. For H � 2mgl
the potential energy term is small compared with the kinetic energy and we
can use H0 = p2

θ/2m and take g as the expansion parameter. This will give
a perturbation theory involving inverse powers of pθ, which will obviously
blow up as |pθ| → 0, i.e. as the rotation frequency approaches zero and we
approach the separatrix. This blowup is an example of a resonance between
the frequency of rotation and the frequency of the perturbation (in this case
zero frequency).

4.6 Properties of canonical transformations

4.6.1 Preservation of phase-space volume

One of the most important properties of canonical transformations is that
their Jacobian determinants det(∂Zi/∂zj) are always unity2. That is, a region
of phase space has the same volume whether represented in the old or new
canonical coordinates.

This is most easily seen (in the case of transformations continuously con-
nected with the identity at least) by showing that Hamiltonian flows are
incompressible (see Fig. 4.2). To do this we calculate the divergence of
ż = (∂H/∂p,−∂H/∂q):

div ż =
∂

∂q
·∂H
∂p

− ∂

∂p
·∂H
∂q

≡ 0 . (4.59)

Then the conservation of the phase-space volume follows from the application
of Gauss’ theorem since the surface integral of ż is the rate of change of the
volume within the surface. This result obviously applies to any flows built
up from infinitesimal canonical transformations, not only to Hamiltonian

2Unless we also include time reversal, x 7→ x, p 7→ −p, where the Jacobian is −1.
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Figure 4.2: Incompressible motion of a volume in phase space.

time evolution. (In fact the conservation of phase-space volume holds for all
canonical transformations.)

This result has profound implications both in statistical mechanics and
in dynamical systems theory.

Liouville’s Theorem

In statistical mechanics we exploit the fluid dynamical analogy implied by
the above “proof” by defining a distribution function, f(q,p, t), which is the
phase-space density of a statistical ensemble of systems normalized so that
the probability of finding a system in a small region of phase space of volume
d2nz is f(z, t) d2nz. (Think of phase space as being filled with a dust cloud,
each particle of which represents a system of the ensemble.)

Then, since the number of systems in the ensemble is conserved, f obeys
the continuity equation

∂f

∂t
+ div(żf) = 0 , (4.60)
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or, using the incompressibility result eq. (4.59),

∂f

∂t
+ ż·∂f

∂z
= 0 . (4.61)

That is, the distribution function is constant on a physical path in phase
space. This is Liouville’s theorem of statistical mechanics.

Using ż = (∂H/∂p,−∂H/∂q) we can write the result in terms of Poisson
brackets

∂f

∂t
+ {f,H} = 0 (4.62)

As a consequence we see that statistical equilibrium, ∂f/∂t = 0, is obtained
when {f,H} = 0, which can be achieved by taking f to be a function of
the integrals of the motion. A general closed N -body system in statistical
mechanics is nearly always assumed to be completely chaotic (the ergodic
hypothesis), so that the only integral of motion in a closed system is H itself.
In this case the equilibrium distribution function is a function of H only
[usually the Maxwellian distribution, proportional to exp(−H/kT ) where k
is Boltzmann’s constant and T is the temperature, though in a “collisionless”
plasma it can be appropriate to consider other possibilities].

Hamiltonian mechanics as a dynamical system

The conservation of phase-space volume provides a strong constraint on the
long-time behaviour of a system in that it rules out the possibility of purely
attracting or repelling sets. For instance, if the basin of attraction of an
attracting fixed point had the same dimensions as phase space we could
draw a surface entirely enclosing the fixed point which would contract with
time, thus contradicting the conservation of phase-space volume. This does
not mean that fixed points that are attracting in some directions cannot exist
in Hamiltonian systems, merely that for any attracting direction there must
be a repelling direction to balance it.

The simplest system in which to see some of the consequences of the
conservation of phase-space volume is provided by the period map of a peri-
odically forced one-degree-of-freedom system (sometimes called a 11

2 degree
of freedom Hamiltonian system). Then the phase-space is only two dimen-
sional and the “volume” is in fact an area. Thus the period map is area
preserving.

A standard example is the “kicked rotor”—a pendulum (see Fig. 2.2) in
which gravity is varied periodically (say by oscillating the support vertically
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and transforming to the accelerating frame in which the support is station-
ary). Furthermore we assume the gravity to be applied purely impulsively

g(t) = g0∆t
∞∑

n=−∞

δ(t− tn) (4.63)

where tn ≡ n∆t, with n an integer, and δ(t) is the Dirac δ function, so that g0

is the time average of g(t). The form of the equations of motion is unaffected
by the fact that g depends on time, so the Hamiltonian is the same as in
eq. (3.20)

H(θ, p) =
p2

2ml2
+mg(t)l(1− cos θ) . (4.64)

Between the kicks the motion is

t

ε

tn−1 tn tn+1

pn

θn

g(t) ∆t

p(t)

θ(t)

Figure 4.3: Trial function for
the kicked rotor.

one of uniform rotation with con-
stant angular velocity p/ml. Thus
we can give a potentially exact rep-
resentation of the phase-space path
with θ a continuous, piecewise lin-
ear function of t and p a piecewise
constant step function with only the
values θn at, and pn immediately
before, t = tn as yet unknown. As
illustrated in Fig. 4.3,

θ(t) =
1

∆t
[(tn+1 − t)θn + (t− tn)θn+1] ,

p(t) = pn+1 (4.65)

for t in each range tn ≡ n∆t < t < tn+1 ≡ (n + 1)∆t. Inserting this
trial function in the phase-space action integral eq. (3.32) over the interval
t−N + ε ≤ t ≤ tN + ε, N ≥ 1, ε→ 0+, we get

Sph =
N−1∑

n′=−N

[
pn′+1 (θn′+1 − θn′)−

p2
n′+1∆t

2ml2
−mg0l∆t (1− cos θn′+1)

]
.

(4.66)
The conditions for Sph to be stationary under variations of θn and pn+1,

−N < n < N , (noting that θn occurs in the terms of the sum for both n′ = n
and n′ = n− 1) are

∂Sph

∂pn+1

= θn+1 − θn −
pn+1∆t

ml2
= 0 , (4.67)



4.6. PROPERTIES OF CANONICAL TRANSFORMATIONS 73

and
∂Sph

∂θn

= pn − pn+1 −mg0l∆t sin θn = 0 . (4.68)

These equations define an area-preserving map known as the Standard
Map. It is clearly seen that they approximate the Hamiltonian equations
of motion for the physical pendulum as ∆t → 0. Commonly the map is
re-expressed in terms of an angle coordinate x with period normalized to
unity and a nondimensionalized momentum y, which is p expressed in units
of 2πml2/∆t,

θ = 2πx ,

p =
2πml2

∆t
y . (4.69)

Then the map becomes

yn+1 = yn −
k

2π
sin 2πxn ,

xn+1 = xn + yn+1 , (4.70)

where the chaos parameter k is defined by

k ≡ g0(∆t)
2

l
. (4.71)

Figure 4.4 shows some typical iterated orbits of the map, showing both
chaotic and regular regions. The remnants of the librating pendulum orbits
around the O points in Fig. 3.1 are seen as large “islands” around (x, y) =
(0, 0) and (0, 1) [also (1, 0) and (1, 1) because the phase space is periodic in
y as well as x], but the region corresponding to the X point in Fig. 3.1 is
highly chaotic. There are also new islands due to resonances not present in
the physical pendulum problem (in fact an infinite number of them), each
with chaotic separatrices.

The value of k used in Fig. 4.4 is kc = 0.971635406 . . ., which is the value
at which the last KAM invariant curves with the topology of a rotating pen-
dulum orbit become unstable and break up into invariant Cantor sets. Two
of these KAM curves are shown, being the only curves completely crossing
the figure from left boundary to right. For k < kc the motion is bounded in
y, while for k greater than this value a phase-space point can diffuse without
bound in the positive or negative y-direction.

From eq. (4.71) we see that the integrable limit ∆t → 0 corresponds to
k → 0 [noting that eq. (4.69) shows that the width of the physical pendulum’s
separatrix shrinks to zero as k → 0 when represented in terms of y].
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Figure 4.4: Some representative orbit segments for the Standard Map
showing both chaotic and regular motion.

4.6.2 Transformation of Poisson brackets

Finally, we note the important result the Poisson bracket is invariant under
canonical transformation

{f, g} =
∂f

∂q
·∂g
∂p

− ∂f

∂p
·∂g
∂q

=
∂f

∂Q
· ∂g
∂P

− ∂f

∂P
· ∂g
∂Q

. (4.72)

4.7 Problems

4.7.1 Coriolis yet again

Given the Hamiltonian for a particle on a sphere in nonrotating latitude and
longitude coordinates, θ and φ′, respectively,

K =
p2

θ

2mR2
+

p2
φ′

2mR2 cos2 θ
+ V ′(θ, φ′, t) ,
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find the transformation to the θ, pθ, φ, pφ canonical coordinates, where φ is
the usual latitude measured in the rotating frame defined in problem 2.7.1.
That is, φ′ = Ωt+ φ. Find the Hamiltonian H in the rotating coordinates.

4.7.2 Difference approximations

Using the harmonic oscillator Lagrangian L = 1
2m(ẋ2 − ω2

0x
2)

(a) calculate an approximate action integral S using the piecewise-linear trial
function

x(t) =
1

∆t
[(tn+1 − t)xn + (t− tn)xn+1]

for t in each range tn ≡ n∆t < t < tn+1 ≡ (n+ 1)∆t.
(b) Show that the approximate action integral from t−N to tN (N ≥ 1 being
an arbitrary integer) is stationary for −N < n < N if xn obeys the second-
order difference equation

xn−1 − 2xn + xn+1 = −ω
2
0(∆t)

2

6
(xn−1 + 4xn + xn+1)

(c) Using the approximate action integral S̄(xn, xn+1) evaluated over the
range tn < t < tn+1, as a type 1 generating function, F1(q,Q) = −S̄(xn, xn+1),
with q = xn and Q = xn+1, find the linear canonical transformation from
(xn, pn ≡ p) to (xn+1, pn+1 ≡ P ). Represent this linear transformation as a
matrix and show that the determinant is unity. (It would be advisable to
use Maple or Mathematica for the algebra.)

This provides a discrete-time dynamical system approximation to the true
continuous-time system for the harmonic oscillator.
(d) Iterate the map obtained in (c) 100 times taking the initial point as
x0 = 1, p0 = 0 and plot the result. Use units such that m = ω0 = 1 and use
three timesteps: ∆t = 0.1, ∆t = 3.45 and ∆t = 3.47.

For a bonus mark verify one of the solutions by showing that the second-
order difference equation derived in (b) above (when arranged to give xn+1 in
terms of xn and xn−1) gives the same sequence of x-values as the discrete-time
dynamical system in (c) if two successive values of x given by the dynam-
ical system are used to start the second-order difference equation. I.e. the
discrete time “Lagrangian” and “Hamiltonian” discriptions are dynamically
equivalent. For another bonus mark calculate the eigenvalues for the three
values of ∆t given above. (Again, use Maple or Mathematica.)
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Chapter 5

Answers to Problems

5.1 Chapter 1 Problems

Problem 1.6.1

Two particles are connected by a rigid rod so they are constrained to move a
fixed distance apart. Write down a constraint equation of the form eq. (1.2)
and find suitable generalized coordinates for the system incorporating this
holonomic constraint.

Answer

Let the position of particle 1 with respect to a stationary Cartesian frame
be {x1, y1, z1} and that of particle 2 be {x2, y2, z2}. The rigid rod constraint
equation is then

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 = l2 . (5.1)

This reduces the number of degrees of freedom from 6 to 5, which we could
take to be position of particle 1, {x1, y1, z1}, and the spherical polar angles
θ and φ depicted in Fig. 1.1 to specify the orientation of the rod. However,
a better choice for the three position coordinates would be the coordinates
of the centre of mass [see Problem 3.5.1(a)], whose position vector is

rCM =
m2r1 +m1r2

m1 +m2

. (5.2)

Problem 1.6.2

Suppose we know that the angular momentum vectors rk×mkṙk of a system
of particles are all nonzero and parallel to the z-axis in a particular Cartesian

77
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coordinate system. Write down the differential constraints implied by this
fact, and show that they lead to a set of holonomic constraints. Hence write
down suitable generalized coordinates for the system.

Answer

The differential constraints are provided by the vanishing of the x and y
components of the angular momentum vectors (multiplied by dt)

yk dzk − zk dyk = 0

zk dxk − xk dzk = 0 . (5.3)

for k = 1, 2, . . . , N .
These are satisfied by taking

zk ≡ 0 , (5.4)

which form a set of holonomic constraints. Thus the motions are constrained
to lie in the x, y plane and we can either take q = {x1, y1, x2, y2, . . . , xN , yN}
or transform to polar coordinates using xk = rk cos θk, yk = rk sin θk, so that
q = {r1, θ1, r2, θ2, . . . , rN , θN}.

Remark 5.1 This problem has been called “Ecliptic” because this is the as-
tronomical name of the plane to which the planets are approximately “con-
strained”. It suggests that the reason for this constraint is because the planets
were all created by condensation from the same spinning disk of dust and gas
and thus have parallel angular momenta.

Note: Although eq. (5.4) clearly solves eq. (5.3) we might ask whether this
is the only solution. Thus, suppose that zk is not equal to zero. We can
assume that, except for isolated instants, xk and yk are nonzero also. Thus
we can divide the first eq. (5.3) by zkxk, the second by ykzk, and add to
show (since the terms dzk/zk cancel) that dxk/xk − dyk/yk = 0. However
we are told that the z components of the angular momenta are nonzero, so
that xk dyk − yk dxk 6= 0. Dividing by xkyk we clearly have a contradiction,
so the assumption that zk 6= 0 must be wrong. 2

Problem 1.6.3

Show that any geodesic r = x(τ) on a two-dimensional manifold S : r =
X(θ, ζ) embedded in ordinary Euclidean 3-space, where θ and ζ are arbi-
trary curvilinear coordinates on S, is such that the curvature vector κ(τ) is
everywhere normal to S (or zero).
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n

S

∂ζX(θ,ζ)

∂θX(θ,ζ)

ζ = const

θ = const

κ
e | |

Figure 5.1: Surface S with curvilinear coordinate system, a geodesic,
the three tangent-plane vectors e‖, ∂θX and ∂ζX, and the normal
vectors n and κ.

The curvature vector is defined by κ ≡ de‖/ dl, where e‖(τ) ≡ dx/ dl is
the unit tangent vector at each point along the path r = x(τ).

Answer

The vector length element is dl = dθXθ + dζXζ , where Xθ ≡ ∂θX ≡ ∂X/∂θ
and Xζ ≡ ∂ζX ≡ ∂X/∂ζ. Thus l =

∫
f(θ, ζ, θ̇, ζ̇) dτ with

f ≡
∣∣∣∣ dl

dτ

∣∣∣∣ =
(
X2

θθ̇
2 + 2Xθ·Xζ θ̇ζ̇ + X2

ζ ζ̇
2
)1/2

(5.5)

and

e‖ ≡
1

f

dl

dτ
=
θ̇Xθ + ζ̇Xζ

f
. (5.6)

From eq. (5.5), we have, for any path

∂θ̇f =
1

f

(
X2

θθ̇ + Xθ·Xζ ζ̇
)

=
1

f

(
Xθθ̇ + Xζ ζ̇

)
·Xθ

≡ e‖·Xθ (5.7)

Similarly, by interchanging θ and ζ we have

∂ζ̇f = e‖·Xθ . (5.8)

Also,

∂θf =
1

2f

[
θ̇2∂θ

(
X2

θ

)
+ 2θ̇ζ̇∂θ (Xθ·Xζ) + ζ̇2∂θ

(
X2

ζ

)]
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=
1

f

(
θ̇2Xθ·Xθθ + θ̇ζ̇Xθθ·Xζ + θ̇ζ̇Xθ·Xθζ + ζ̇2Xζ·Xθζ

)
=

1

f

(
θ̇Xθ + ζ̇Xζ

)
·
(
θ̇Xθθ + ζ̇Xθζ

)
≡ e‖·

dXθ

dτ
. (5.9)

Similarly, interchanging θ and ζ, we have

∂ζf ≡ e‖·
dXζ

dτ
. (5.10)

Now consider the Euler–Lagrange equation for a geodesic

d

dτ
∂θ̇f − ∂θf = 0 . (5.11)

Using the identities eq. (5.7) and eq. (5.9) we can write this as

d

dτ

(
e‖·Xθ

)
− e‖·

dXθ

dτ
= 0 . (5.12)

Or, expanding out and cancelling,

Xθ·
d

dτ
e‖ = 0 . (5.13)

Similarly, the Euler–Lagrange equation for ζ variations becomes

Xζ·
d

dτ
e‖ = 0 . (5.14)

Recognizing that κ ≡ ( d/f dτ)e‖ we can write eqs. (5.13) and (5.14) as

Xζ·κ = Xθ·κ = 0 . (5.15)

Since the vectors Xθ and Xζ span the tangent plane at the point r = X(θ, ζ)
(see Fig. 5.1), we have shown that the curvature vector κ has no component
in the tangent plane. Thus either κ = 0 or it is parallel to the unit normal,
n. 2

5.2 Chapter 2 Problems

Problem 2.8.1(a)

As a model of the motion of a fluid element or dust particle in a planetary
(e.g. Earth’s) atmosphere, consider the motion of particle of unit mass con-
strained to move on the surface of a perfectly smooth sphere of radius R
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rotating with angular velocity Ω about the z-axis. Suppose the force on the
particle is given by an effective potential V (θ, φ) (see Sec. 2.4.6), where θ and
φ are the latitude and longitude respectively.

(a) Write down the Lagrangian in a frame rotating with the planet, taking the
generalized coordinates to be the latitude and longitude so that z = R sin θ,
x = R cos θ cos(φ+Ωt), y = R cos θ sin(φ+Ωt), where x, y, z is a non-rotating
Cartesian frame.

Write down the equations of motion, and find a first integral (i.e. constant
of the motion) in the case where V is independent of longitude. Among
this class of potentials find the special case V = V0(θ) required to make
equilibrium possible (i.e. so that the equations of motion admit the solution
θ̇ = φ̇ = 0 at each latitude).

Answer

ẋ = −Rθ̇ sin θ cos(φ+ Ωt)−R(Ω + φ̇) cos θ sin(φ+ Ωt)

ẏ = −Rθ̇ sin θ sin(φ+ Ωt) +R(Ω + φ̇) cos θ cos(φ+ Ωt)

ż = Rθ̇ cos θ (5.16)

Thus the kinetic energy is given by

T = 1
2

(
ẋ2 + ẏ2 + ż2

)
= 1

2R
2
[
θ̇2 sin2 θ

(
cos2(φ+ Ωt) + sin2(φ+ Ωt)

)
+ (Ω + φ̇)2 cos2 θ

(
sin2(φ+ Ωt) + cos2(φ+ Ωt)

)
+ θ̇2 cos2 θ

]
= 1

2R
2
[
θ̇2 + (Ω + φ̇)2 cos2 θ

]
, (5.17)

and the Lagrangian, L = T − V , by

L = 1
2R

2
[
θ̇2 + (Ω + φ̇)2 cos2 θ

]
− V (θ, φ) . (5.18)

Thus
∂L

∂θ̇
= R2θ̇ (5.19)

and
∂L

∂φ̇
= R2(Ω + φ̇) cos2 θ (5.20)
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and thus the Lagrange equations of motion ( d/ dt)∂L/∂θ̇ = ∂L/∂θ and
( d/ dt)∂L/∂φ̇ = ∂L/∂φ become

R2θ̈ = −R2(Ω + φ̇)2 sin θ cos θ − ∂V

∂θ
(5.21)

and

R2φ̈ cos2 θ − 2R2θ̇(Ω + φ̇) sin θ cos θ = −∂V
∂φ

. (5.22)

In the case where V = V0(θ), φ is an ignorable coordinate and thus ∂L/∂φ̇,
given by eq. (5.20), is an integral of the motion.

If in this latter case we further demand that V0 be such that θ̇ ≡ φ̇ = 0
for all θ and φ, and use the identity sin 2θ ≡ 2 sin θ cos θ, then eq. (5.21) gives

∂V0

∂θ
= −1

2R
2Ω2 sin 2θ , (5.23)

or, integrating,

V0(θ) = 1
4R

2Ω2 cos 2θ + const = 1
2R

2Ω2 cos2 θ , (5.24)

where the second equality follows from the identity cos 2θ ≡ 2 cos2 θ− 1 and
the choice const = 1

4R
2.

Problem 2.8.1(b)

Now assume that the general form of the potential is V (θ, φ) = V0(θ) +
h(θ, φ), where h is the enthalpy (proportional to p(γ−1)/γ) defined in Sec. 2.4.6.
Assuming the winds are slow, so that second order time derivatives of θ and
φ (and products of first order time derivatives) can be neglected, show that
the velocity of the particle in the rotating frame is at right angles to the
pressure gradient −∇p.

Draw a sketch of a typical weather-map “low” (i.e. a localized depression
in p) showing the pressure contours, the direction of the force on a fluid ele-
ment and the direction of motion. Hence show that motion in a depression
or low is cyclonic, where “cyclonic” in geophysical fluid dynamics means “in
the direction of the planet’s rotation” (i.e. clockwise in the Southern Hemi-
sphere, counter-clockwise in the Northern Hemisphere for Ω > 0).
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Answer

Making the slow approximation, and taking into account eq. (5.23) the equa-
tions of motion, eqs. (5.21) and (5.22), become

R2Ωφ̇ sin 2θ ≈ −∂h
∂θ

(5.25)

and

R2Ωθ̇ sin 2θ ≈ ∂h

∂φ
. (5.26)

Thus the pressure gradient causes a wind proportional to spatial derivatives
of h, and the slow approximation will be best satisfied when h is small.

These two equations give the wind speed in angular velocities. We now
calculate the time rate of change of the enthalpy along a stream line

ḣ ≡ w·∇h

≡ θ̇
∂h

∂θ
+ φ̇

∂h

∂φ

≈ 1

R2Ω sin 2θ

(
∂h

∂φ

∂h

∂θ
− ∂h

∂θ

∂h

∂φ

)
≡ 0 (5.27)

from eqs. (5.25) and (5.26). Thus the effect of the Coriolis forces is to make
the air move along the pressure contours, even though the forces acting on a
fluid element act at right angles to the contours. It is for this reason that the
vortices caused by highs and lows of pressure are so long lived—the air does
not rush in to equalize the pressure differences but, rather, rotates around
the maxima and minima of pressure.

In order to establish the direction of rotation it is sufficient to draw a
sketch in a Mercator’s projection (i.e. in the θ-φ plane) and use eqs. (5.25)
and use (5.26) to show the wind direction at a few representative points on
a typical pressure contour.
Note: It is easy to show from eq. (2.49) that p/ρ = constp(γ−1)/γ, and so,
since γ > 1, the enthalpy is an increasing function of the pressure.

Problem 2.8.1(c)

Consider a charged particle constrained to move on a non-rotating smooth
insulating sphere, immersed in a uniform magnetic field B = Bez, on which
the electrostatic potential is a function of latitude and longitude. Write down
the Lagrangian in the same generalized coordinates as above and show it is
the same as that for the particle on the rotating planet with appropriate
identifications of Ω and V .
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Answer

The Lagrangian is L = T+eṙ·A−eΦ, where T is given by eq. (5.17) with Ω set
to zero. We now need a vector potential A such that Bz ≡ ∂xAy−∂yAx = B.
A suitable choice is Ax = −1

2By, Ay = 1
2Bx, Az = 0. Thus, from eq. (5.16),

eṙ·A = 1
2eB(xẏ − yẋ)

= 1
2eBR

2 cos θ
[
cosφ(−θ̇ sin θ sinφ+ φ̇ cos θ cosφ)

+ sinφ(θ̇ sin θ cosφ+ φ̇ cos θ sinφ)
]

= 1
2eBR

2φ̇ cos2 θ . (5.28)

Thus the Lagrangian is

L = 1
2mR

2
(
θ̇2 + φ̇2 cos2 θ

)
+ 1

2eBR
2φ̇ cos2 θ − eΦ(θ, φ) . (5.29)

Completing the square we can rewrite the Lagrangian in the form

L = 1
2mR

2

[
θ̇2 +

(
φ̇+

eB

2m

)2

cos2 θ

]
− e2B2R2

8m
cos2 θ − eΦ(θ, φ) . (5.30)

This is the same as eq. (5.18) with the identifications

Ω =
eB

2m
(5.31)

and

V (θ, φ) =
e2B2R2

8m
cos2 θ + eΦ(θ, φ) . (5.32)

Note that eq. (5.31) can also be written Ω = 1
2ωc, where ωc ≡ eB/m is

the cyclotron frequency.

Problem 2.8.2

Consider the following potential V , corresponding to a particle of mass m
oscillating along the x-axis under the influence of a nonideal spring (i.e. one
with a nonlinear restoring force),

V (x) =
mω2

0

2

(
x2 + σ

x4

l20

)
,

where the constant ω0 is the angular frequency of oscillations having ampli-
tude small compared with the characteristic length l0, and σ = ±1 depends
on whether the spring is “soft” (σ = −1) or “hard” (σ = +1).
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Consider the trial function

x = l0 [A cosωt+B cos 3ωt+ C sin 3ωt] ,

where A, B, C are the nondimensionalized amplitudes of the fundamental
and third harmonic, respectively, and ω is the nonlinearly shifted frequency.
By using this trial function in the time-averaged Hamilton’s Principle, find
implicit relations giving approximate expressions for ω, B and C as functions
of A. Show that C ≡ 0. The trial function is strictly appropriate only to the
case A � 1, but plot ω/ω0 and B vs. A from 0 to 1 in the case of both a
hard and a soft spring.

Answer

See the following Maple notebook.
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5.3 Chapter 3 Problems

Problem 3.5.1(a)

Write down a Lagrangian for the problem of two particles of mass m1 and
m2 connected by a light rigid rod of length l in a gravitational field g. Take
the generalized coordinates of the system to be q = {x, y, z, θ, φ}, with the
coordinates of the two particles being given by

x1 = x− α1l sin θ cosφ

y1 = y − α1l sin θ sinφ

z1 = z − α1l cos θ

x2 = x+ α2l sin θ cosφ

y2 = y + α2l sin θ sinφ

z2 = z + α2l cos θ ,

where α1 ≡ m2/(m1 +m2) and α2 ≡ m1/(m1 +m2) (so that (x, y, z) is the
centre of mass).

Answer

ẋ1 = ẋ+ α1lφ̇ sin θ sinφ− α1lθ̇ cos θ cosφ

ẋ2 = ẋ− α2lφ̇ sin θ sinφ+ α2lθ̇ cos θ cosφ

(5.33)

Becausem1α1 = m2α2 the cross terms cancel when we expand the x-contribution
to the kinetic energy,

1
2m1ẋ

2
1 + 1

2m2ẋ
2
2 =

m1 +m2

2
ẋ2 +

m1m2l
2

2(m1 +m2)
(φ̇ sin θ sinφ− θ̇ cos θ cosφ)2 .

(5.34)
Similarly

1
2m1ẏ

2
1 + 1

2m2ẏ
2
2 =

m1 +m2

2
ẏ2 +

m1m2l
2

2(m1 +m2)
(φ̇ sin θ cosφ+ θ̇ cos θ sinφ)2 ,

(5.35)
and

1
2m1ż

2
1 + 1

2m2ż
2
2 =

m1 +m2

2
ż2 +

m1m2l
2

2(m1 +m2)
θ̇2 sin2 θ . (5.36)
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Thus, adding, the kinetic energy is

T =
m1 +m2

2
(ẋ2 + ẏ2 + ż2) +

m1m2l
2

2(m1 +m2)
(θ̇2 + sin2 θ φ̇2) . (5.37)

This is the kinetic energy of a free particle of mass (m1+m2) plus that of a
particle with the reduced mass µ ≡ m1m2/(m1 +m2) constrained to move on
the surface of a sphere of radius l. [Cf. eq. (5.17) of the Coriolis problem with
Ω set to zero, and recalling that we are here using spherical polar coordinates
where the origin of θ is at the pole, in contrast to the latitude angle whose
origin was at the equator—hence sin θ and cos θ are interchanged.] This is a
consequence of the well-known result that the kinetic energy of a system of
particles is the kinetic energy of the centre of mass plus the kinetic energy
in the centre-of-mass frame.

The potential energy is

V = (m1z1 +m2z2)g = (m1 +m2)zg , (5.38)

and the Lagrangian is L = T−V . We see from eqs. (5.37) and (5.38) that, by
using the centre of mass as the origin for our polar coordinates, we have made
L ignorable in x, y and φ and that the centre-of-mass coordinates x, y, z form
a subsystem completely independent from that of the angular coordinates.

Problem 3.5.1(b)

Use this Lagrangian to construct the Hamiltonian for the system. Is it of the
form T + V ?

Answer

Answering the second part of the question first, the Hamiltonian must be
of the form T + V because the constraint |r2 − r1| = l does not depend
explicitly on time and thus the system comes under the general case treated
in Sec. 3.2.6. From eq. (5.37) the mass matrix is

µ =


M 0 0 0 0
0 M 0 0 0
0 0 M 0 0
0 0 0 µl2 0
0 0 0 0 µl2 sin2 θ

 , (5.39)
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where M ≡ m1 + m2 is the total mass and µ is the reduced mass defined
earlier. This is trivially inverted to give, from Sec. 3.2.6, eq. (3.27),

H =
p2

x

2M
+

p2
y

2M
+

p2
z

2M
+

p2
θ

2µl2
+

p2
φ

2µl2 sin2 θ
+Mgz . (5.40)

Note: Because x, y and φ are cyclic (ignorable) coordinates, px, py and
pφ are constants of the motion. The motion of the rod can thus be found
by studying two independent, one-dimensional dynamical problems in z and
θ, with Hamiltonians p2

z + Mgz and p2
θ/2µl

2 + p2
φ/2µl

2 sin2 θ respectively.
The z-dynamics is just uniformly accelerated motion, with solution z =
z0 + (pz,0/m)t− 1

2gt
2, pz = pz,0−mgt. A qualitative understanding of the θ-

dynamics can be had by considering that the “pseudo-potential” p2
φ/2µl

2 sin2 θ
forms a well about θ = π/2 (assuming pφ 6= 0) with sides becoming infinitely
high at θ = 0 and π. Thus θ is an oscillatory function of time. (In fact we
know from elementary physics that the motion can be integrated in closed
form because the rod spins at right angles to a constant angular momentum
vector with arbitrary, fixed direction.)

Problem 3.5.1(c)

Find the Hamiltonian corresponding to the Coriolis Lagrangian in Problem
2.8.1,

L = 1
2R

2
[
θ̇2 + cos2 θ (Ω + φ̇)2

]
− V (θ, φ) .

Is it of the form T + V ?

Answer

From the above,

pθ ≡
∂L

∂θ̇
= R2θ̇ (5.41)

so

θ̇ =
pθ

R2
. (5.42)

Also

pφ ≡
∂L

∂φ̇
= R2 cos2 θ (Ω + φ̇) . (5.43)

so

φ̇ =
pφ

R2 cos2 θ
− Ω . (5.44)
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Thus

H ≡ pθθ̇ + pφφ̇− L

=
p2

θ

R2
+

p2
φ

R2 cos2 θ
− Ωpφ −

p2
θ

2R2
−

p2
φ

2R2 cos2 θ
+ V (θ, φ)

=
p2

θ

2R2
+

p2
φ

2R2 cos2 θ
− Ωpφ + V (θ, φ) . (5.45)

Given that

T = 1
2R

2
[
θ̇2 + cos2 θ (Ω + φ̇)2

]
=

p2
θ

2R2
+

p2
φ

2R2 cos2 θ
(5.46)

it is clear that the Hamiltonian differs from T + V by the term −Ωpφ.

Problem 3.5.2

Find the Hamiltonian corresponding to the
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Figure 5.2: H(x, 0).

Lagrangian of the anharmonic oscillator in Prob-
lem 2.8.2. Sketch contours of H(x, p) in the
soft potential case for (a) H < mω2

0l
2
0/8 and

(b) H > mω2
0l

2
0/8. Indicate representative tra-

jectories of the system in phase-space. Try
to include representatives of each qualitatively
distinct orbit.

Answer

The Lagrangian is L = 1
2mẋ

2 + V (x), which is in the standard form treated
in Sec. 3.2.3. Thus ẋ = p/m and the Hamiltonian is

H =
p2

2m
+
mω2

0

2

(
x2 − x4

l20

)
. (5.47)

Before sketching the phase space we first get a qualitative feel for its
salient features by looking at the behaviour of H as a function of x and p
and finding its stationary points, i.e. where ∂H/∂x = ∂H/∂p = 0. (From
Hamilton’s equations of motion we see that such points correspond to ẋ =
ṗ = 0 and are thus equilibrium points, where the system does not move—fixed
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points of the dynamical system. Points where the Hamiltonian is a minimum
are stable, whereas saddle points correspond to unstable equilibria.)

For any fixed x the graph of H is a parabola, concave upwards, with its
minimum at p = 0. Thus H approaches +∞ as |p| → ∞.

We now examine the behaviour of H in the limits of large and small x.
For |x| � l0 the term quartic in x is very small compared with the quadratic
term so the graph of H is a parabola, concave upwards, with its minimum
at x = 0.

On the other hand, for |x| � l0 the negative quartic term dominates over
the quadratic term and H approaches −∞ as |x| → ∞. The behaviour of H
on the x-axis is graphed in Fig. 5.2, using units such that l0 = ω0 = m = 1.
It is seen that there are maxima of H at finite values of |x|. The maxima
and minima of H as a function of x are the roots of

∂H

∂x
= mω2

0x

(
1− 2x2

l20

)
, (5.48)

which are at x = 0 (the minimum) and x = ±l0/
√

2 (the maxima).

Since the origin is the intersection of the
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Figure 5.3: Phase
space of the an-
harmonic oscilla-
tor.

lines of minima, x = 0, p = 0, there is a stable
equilibrium point at (x, p) = (0, 0). There are
mimimax or saddle points at the intersections
of the line of minima p = 0 and the lines of
maxima x = ±l0/

√
2. Thus the points (x, p) =

(±l0/
√

2, 0) are also equilibrium points, but
are unstable towards small perturbations. At
both these saddle points, H = mω2

0l
2
0/8, so

that they are linked by the contourH = const =
mω2

0l
2
0/8.

Contours of H in units such that l0 = ω0 =
m = 1 are plotted in Fig. 5.3. As in Fig. 3.1
we have marked the stable and unstable fixed
points by O and X, respectively, and have in-

dicated the contour H = mω2
0l

2
0/8 by a dashed line. Directions of motion (to

the right in the upper half plane because ẋ > 0 and to the left in the lower
half plane) are marked by arrows. It is seen that the contour H = mω2

0l
2
0/8

forms the separatrix between five classes of qualitatively different orbit:

• bounded oscillatory (librating) orbits contained within the separatrix,
so that H < mω2

0l
2
0/8, corresponding to a particle trapped in the po-

tential well;
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• unbounded orbits withH < mω2
0l

2
0/8 which cross the x-axis (p = 0) at a

value x < l0/
√

2 or x > l0/
√

2, corresponding to particles approaching
from the left or right, respectively, and being reflected by a potential
barrier;

• unbounded orbits with H > mω2
0l

2
0/8, which cross the p-axis (x = 0) at

a value x < mω0l0/2 or x > mω0l0/2, corresponding to particles with
sufficient energy to cross the potential barriers (from right to left, or
left to right, respectively) without being reflected.

Problem 3.5.3

Consider the motion of a particle of charge e and mass m in a straight, in-
finitely long magnetic confinement system with vector potential A = ψ(x, y)ez.

(a) Show that Bx = ∂ψ/∂y, By = −∂ψ/∂x, Bz = 0 and thus that contours
of ψ(x, y) define magnetic field lines.

Answer

Given Ax = Ay = 0, Az = ψ(x, y) we calculate B ≡ ∇×A:

Bx = ∂yAz − ∂zAy = ∂yψ ,

By = ∂zAx − ∂xAz = −∂xψ . (5.49)

(Alternatively, we can observe that B = ∇ψ×ez and take the x and y com-
ponents.) From eq. (5.49) we have B·∇ψ = ∂yψ ∂xψ − ∂xψ ∂yψ ≡ 0. Thus
ψ = const on a magnetic field line and so plotting contours of ψ maps out
the field.

(b) Show that the Hamiltonian is

H =
p2

x

2m
+

p2
y

2m
+

[pz − eψ(x, y)]2

2m
,

write down the Hamiltonian equations of motion and give two integrals of
the motion.

Answer

The given expression for H follows directly by writing eq. (3.2.5) in Carte-
sian components and using Ax = Ay = 0, Az = ψ(x, y). The Hamiltonian
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equations of motion are

ẋ =
∂H

∂px

=
px

m
,

ẏ =
∂H

∂py

=
py

m
,

ż =
∂H

∂pz

=
(pz − eψ)

m
(5.50)

and

ṗx = −∂H
∂x

=
e(pz − eψ)

m

∂ψ

∂x
,

ṗy = −∂H
∂y

=
e(pz − eψ)

m

∂ψ

∂y
,

ṗz = −∂H
∂z

= 0 . (5.51)

From the last equation above, pz is clearly an integral of the motion. Also,
since H does not depend explicitly on time, H itself constitutes a second
integral of motion as shown in Sec. 3.3.

(c) It can be shown1 that in any region with no electric current, ψ(x, y) can
be represented as the real part of an analytic function of the complex variable
ζ ≡ x + iy. Thus, write ψ(x, y) = Re Ψ(ζ) and show that the equations of
motion for ζ and pζ ≡ px + ipy are

ζ̇ =
1

m
pζ ,

ṗζ =
e

m
[pz − eRe Ψ(ζ)] [Ψ′(ζ)]∗ ,

where the prime on Ψ means derivative with respect to its argument, and ∗
means complex conjugate.

Answer

Equation (5.50) implies that ζ̇ ≡ ẋ + iẏ = (px + ipy)/m ≡ pζ/m, as was to
be shown.

1This is because Ampère’s law ∇×B = µ0j = 0 leads to Laplace’s equation, ∇2ψ = 0,
and it is a standard result of complex analysis that the real and imaginary parts of analytic
functions obey the two-dimensional Laplace’s equation.
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We are given that ψ(x, y) = Re Ψ(ζ). Therefore

∂xψ = Re [∂xζ Ψ′(ζ)] = Re Ψ′(ζ) ,

∂yψ = Re [∂yζ Ψ′(ζ)] = Re [iΨ′(ζ)] ≡ −Im Ψ′(ζ) . (5.52)

Thus, from eq. (5.51),

ṗζ =
e

m
(pz − eψ)(∂xψ + i∂yψ)

=
e

m
(pz − eRe Ψ)[Re Ψ′(ζ)− i Im Ψ′(ζ)]

≡ e

m
(pz − eRe Ψ)[Ψ′(ζ)]∗ (5.53)

as was to be shown.

5.4 Chapter 4 Problems

Problem 4.7.1

Given the Hamiltonian for a particle of unit mass on a sphere in nonrotating
latitude and longitude coordinates, θ and φ′, respectively,

K =
p2

θ

2R2
+

p2
φ′

2R2 cos2 θ
+ V ′(θ, φ′, t) , (5.54)

find the transformation to the θ, pθ, φ, pφ canonical coordinates, where φ is
the usual latitude measured in the rotating frame defined in Problem 2.8.1.
That is, φ′ = Ωt+ φ. Find the Hamiltonian H in the rotating coordinates.

Answer

We treat this as a “point transformation”, as in Sec. 4.2.2, with q = {θ, φ},
Q = {θ′, φ′}, p = {pθ, pφ} and P = {pθ′ , pφ′}.

We thus have the generating function

F2(θ, φ, pθ′ , pφ′ , t) = θ′pθ′ + φ′pφ′ , (5.55)

where θ′ ≡ θ and φ′ ≡ Ωt+ φ. That is,

F2(θ, φ, pθ′ , pφ′ , t) = θpθ′ + (Ωt+ φ)pφ′ . (5.56)

[Note that in eq. (5.55) we have committed the usual physicist’s “abuse of
notation” in taking θ′ and φ′ to denote functions of θ and φ rather than
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independent variables. We avoided this abuse during the formal development
in Sec. 4.2.2 by denoting the corresponding function by G rather than Q.
In practice it is convenient to take it as understood from the context that Q
is a function of q, rather than generate a new notation such as G. This is
convenient, but one needs to be aware of what one is doing.]

The transformation equations are, from Sec. 4.2,

pθ =
∂F2

∂θ
= pθ′

pφ =
∂F2

∂φ
= pφ′

θ′ =
∂F2

∂pθ′
= θ

φ′ =
∂F2

∂pφ′
= Ωt+ φ , (5.57)

and

K = H +
∂F2

∂t
= H + Ωpφ′ . (5.58)

That is, from eq. (5.54),

H = K − Ωpφ′ =
p2

θ

2R2
+

p2
φ

2R2 cos2 θ
− Ωpφ + V ′(θ,Ωt+ φ, t) . (5.59)

With the identification V ′(θ,Ωt + φ, t) = V (θ, φ) we recognize eq. (5.59) as
the same Hamiltonian derived in Problem 3.5.1(c). This derivation makes it
clear that the reason H is not of the form T+V is because the transformation
to the rotating frame is time dependent.

Problem 4.7.2

Using the harmonic oscillator Lagrangian L = 1
2m(ẋ2 − ω2

0x
2)

(a) calculate an approximate action integral S by evaluating the action inte-
gral exactly using the piecewise-linear trial function

x(t) =
1

∆t
[(tn+1 − t)xn + (t− tn)xn+1]

for t in each range tn ≡ n∆t < t < tn+1 ≡ (n+ 1)∆t.



5.4. CHAPTER 4 PROBLEMS 95

Answer

In the interval tn ≤ t ≤ tn+1 the velocity is constant, ẋ = (xn+1 − xn)/∆t.
Thus the contribution to the action from this interval is given by

S̄(xn, xn+1) ≡
∫ tn+1

tn

dt L

=
m∆t

2(xn+1 − xn)

∫ xn+1

xn

dx

[
(xn+1 − xn)2

(∆t)2
− ω2

0x
2

]
=

m∆t

2(xn+1 − xn)

[
(xn+1 − xn)3

(∆t)2
− ω2

0

(x3
n+1 − x3

n)

3

]
=

m

2

[
(xn+1 − xn)2

∆t
− ω2

0∆t

3
(x2

n+1 + xn+1xn + x2
n)

]
.(5.60)

(b) Show that the approximate action integral from t−N to tN (N > 1 being
an arbitrary integer) is stationary for −N < n < N if xn obeys the second-
order difference equation

xn−1 − 2xn + xn+1 = −ω
2
0(∆t)

2

6
(xn−1 + 4xn + xn+1)

Answer

The total action S is a sum, . . . + S̄(xn−1, xn) + S̄(xn, xn+1) + . . ., in which
xn occurs in two terms. The condition for S to be stationary with respect
to variations in xn is ∂S/∂xn = 0. From eq. (5.60), after multiplying by
−∆t/m, this may be written

−∆t

m

(
∂S̄(xn−1, xn)

∂xn

+
∂S̄(xn, xn+1)

∂xn

)
= −(xn − xn−1) +

(ω0∆t)
2

6
(2xn + xn−1)

+ (xn+1 − xn) +
(ω0∆t)

2

6
(xn+1 + 2xn)

= xn−1 − 2xn + xn+1 +
(ω0∆t)

2

6
(xn−1 + 4xn + xn+1) = 0 2 .(5.61)

(c) Using the approximate action integral S̄(xn, xn+1) evaluated over the
range tn < t < tn+1, as a type 1 generating function, F1(q,Q) = −S̄(xn, xn+1),
with q = xn and Q = xn+1, find the linear canonical transformation from
(xn, pn ≡ p) to (xn+1, pn+1 ≡ P ). Show that the determinant of the map is
unity.

This provides a discrete-time dynamical system approximation to the true
continuous-time system for the harmonic oscillator.
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Answer

From eq. (5.60), the generating function is

F1(xn, xn+1) = −m
2

[
(xn+1 − xn)2

∆t
− ω2

0∆t

3
(x2

n+1 + xn+1xn + x2
n)

]
. (5.62)

Thus, from eqs. (4.16) and (4.17) the transformation is given by

pn =
∂F1

∂xn

=
m

2

[
2(xn+1 − xn)

∆t
+
ω2

0∆t

3
(2xn + xn+1)

]
,

pn+1 = − ∂F1

∂xn+1

=
m

2

[
2(xn+1 − xn)

∆t
− ω2

0∆t

3
(2xn+1 + xn)

]
. (5.63)

For further analysis see the following Maple printout where it is verified that
the transformation matrix has unit determinant. That this must be the
case follows both from the general principal that canonical transformations
preserve phase-space volume (or, in this case, area) and from the fact that
the determinant in this case is also the Poisson bracket between q and p,
which is unity and conserved under canonical transformation. Thus we have
constructed a symplectic integrator—a discrete-time dynamical system that
preserves some of the Hamiltonian character of the continuous-time dynam-
ical system.

(d) Iterate the map obtained in (c) 100 times taking the initial point as
x0 = 1, p0 = 0 and plot the result. Use units such that m = ω0 = 1 and use
three timesteps: ∆t = 0.1, ∆t = 3.45 and ∆t = 3.47.

For a bonus mark verify one of the solutions by showing that the second-
order difference equation derived in (b) above (when arranged to give xn+1 in
terms of xn and xn−1) gives the same sequence of x-values as the discrete-time
dynamical system in (c) if two successive values of x given by the dynam-
ical system are used to start the second-order difference equation. I.e. the
discrete time “Lagrangian” and “Hamiltonian” discriptions are dynamically
equivalent. For another bonus mark calculate the eigenvalues for the three
values of ∆t given above.

Again, see the following Maple printout. For ∆t = 0.1 the difference
approximation gives results very close to the true continuous-time harmonic
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oscillator solution, which is a circle in phase space. For large enough ∆t
the iteration goes unstable, which occurs somewhere between ∆t = 3.45
and ∆t = 3.47. This can be predicted by evaluating the eigenvalues of the
transformation matrix—because the determinant is unity they must satisfy
λ1λ2 = 1, which means they are either complex-conjugate pairs on the unit
circle in the complex plane (the stable case), or they are real, mutually
reciprocal numbers, one of which must be greater than unity, leading to
instability (exponential growth).
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Chapter 6

References and Index

SOME TEXTS on classical dynamics are listed below.

1. The most referred to text is undoubtedly Classical Mechanics (Addison-
Wesley, 1st ed. 1953; 2nd ed. 1980) by Herbert Goldstein, although
it does not have much on modern developments in nonlinear Hamil-
tonian dynamics. The call number is QA805.G6 in the Hancock and
Earth Sciences libraries.

2. Another classic, concise text is Mechanics (Pergamon 1st ed. 1960, 2nd
ed. 1969) by L. D. Landau and E. M. Lifshitz; tr. from the Russian
by J. B. Sykes and J. S. Bell. The call number is QA805.L283 in the
Hancock, Stromlo, Chemistry and Earth Sciences libraries.

3. A clearly written text of similar vintage is Principles of Mechanics by
J.L. Synge and B.A. Griffiths (McGraw-Hill, New York, 1959). The call
number is QA807.S9 in the Hancock, Stromlo, Chemistry and Physical
Sciences libraries.

4. A good, more modern text is Mechanics : from Newton’s Laws to De-
terministic Chaos (Springer, 1990) by Florian Scheck. The call number
is TA350.S35313 in the Physical Sciences library.

5. Another interesting, though not as carefully written, text is Dynamics
(Wiley, 1983) by S. Neil Rasband. The call number is QA845.R35 in
the Hancock library.

6. A good introductory book is I. Percival and D. Richards, Introduction to
Dynamics (Cambridge University Press, 1982). By limiting attention
to systems with one degree of freedom, the authors have space to devote
to the qualitative analysis of nonlinear dynamical systems, including
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such modern topics as chaos. The call number is QC133.P46 in the
Hancock library.

7. For a great deal of detail on nonlinear dynamics, written in a style easily
accessible by physicists, see Regular and Chaotic Dynamics (Springer,
2nd ed. 1992; 1st ed. 1983 called Regular and stochastic motion) by
Allan J. Lichtenberg and Michael A. Lieberman. The call number is
QA1.A647 in the Hancock and Stromlo libraries.

8. Classical Dynamics: a Contemporary Approach Jorge V. José and Eu-
gene J. Saletan (Cambridge U. P., New York, 1998) is a large modern
text. See Physics Today May 1999, p. 66, for a favourable review. The
call number is QA805.J73 in the Hancock library.

9. Fundamentals of Applied Dynamics by James H. Williams (New York,
Wiley, c1996) is a large text used in the ANU Engineering Dynamics
course. It includes the Lagrangian approach and Hamilton’s Principle,
but not Hamilton’s equations. It is written in an interesting manner
with many physical examples having a modern flavour, including treat-
ment of electrical circuits using Lagrangian methods. Despite the use of
the word “applied” in the title, it is actually a very scholarly work and
contains an unusual amount of thoughtful historical discussion. The
call number is QA845.W68 in the Hancock library.

10. A more mathematically oriented book by one of the modern grand
masters in the field is Mathematical Methods of Classical Mechanics
by V.I. Arnol’d, translated from the Russian by K. Vogtmann and A.
Weinstein (Springer–Verlag, New York, 1980).

11. An older mathematically oriented classic is A Treatise on the Analytical
Dynamics of Particles and Rigid Bodies by E.T. Whittaker (Cambridge
University Press, Cambridge UK, 1927). QA845.W62 Hancock.
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